ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 4
MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 4 - Summary

Learning Objectives

1. Basics of electrical circuits
2. Define Kirchhoff's voltage law (KVL)
3. Compute currents in simple circuits using KVL and Ohm's law
4. Use loop analysis method to compute loop currents

Electrical Circuit

An electrical circuit is a network of electrical elements interconnected in a closed path such that currents can continuously flow. Example:

Circuit Node

Node is a point at which two or more elements are connected. Examples:

Series connected elements

Elements are said to be connected in series if: 1) they share only one common node with other elements in the series and 2) they all carry the same current.

It does not matter if the order of series elements is changed

Question

Which elements in the circuit below are in series?

Parallel connected elements

Elements are said to be connected in parallel if: 1) they all share both terminal nodes and 2) they have the same voltage across them.

Which elements in the circuits above are connected in parallel?

RECALL: Parallel connected resistors

N resistors connected in series can be replaced by an equivalent resistor $\boldsymbol{R}_{e q}$ given by

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}=\sum_{k=1}^{N} \frac{1}{R_{k}}
$$

Special case: Two parallel resistors

$$
R_{e q}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If the resistors are identical

$$
\begin{gathered}
\boldsymbol{R}_{\mathbf{1}}=\boldsymbol{R}_{\mathbf{2}}=\boldsymbol{R} \\
R_{e q}=\frac{R R}{R+R}=\frac{R}{2}
\end{gathered}
$$

Corollary: N identical parallel resistors

N identical resistors in parallel have an equivalent resistance

$$
R_{e q}=\frac{R}{N}
$$

Solution of circuits

Ohm's law describes the current-voltage relationship across a resistor element excited by a voltage source or by a current source.

$$
\begin{aligned}
& V_{A B}=V_{i n} \\
& i=V_{A B} / R
\end{aligned}
$$

$i=I_{i n}$
$V_{A B}=R i$

Solution of circuits

We examine now methods to solve more complex circuits.

The goal is to find the voltage at each node and the current through each element of the circuit, to characterize completely the electrical behavior.

The most important equations to solve a circuit are:

- Kirchhoff Voltage Law (KVL)
- Kirchhoff Current Law (KCL)

Kirchhoff Voltage Law (KVL)

KVL states that the algebraic sum of voltage around a circuit loop (a closed path) is zero.

KVL) $\quad V_{a b}+V_{b c}+V_{c d}+V_{d a}=0$

Direction of rotation is arbitrary, but we will normally consider a clockwise path.

Kirchhoff Current Law (KCL)

KVL states that the algebraic sum of current entering or leaving a node is zero (conservation of charge).

$$
\boldsymbol{i}_{\mathbf{1}}=\boldsymbol{i}_{\mathbf{2}}+\boldsymbol{i}_{\mathbf{3}} \quad \text { current in }=\text { current out }
$$

$$
\mathrm{KCL})-i_{1}+i_{2}+i_{3}=0
$$

Example $1 \quad \mathrm{KVL}) \quad V_{\mathbf{a b}}+V_{\mathbf{b c}}+V_{\mathbf{c d}}+V_{\mathbf{d a}}=\mathbf{0}$

Then, express voltage in each segment using Ohm's Law

Ohm's Law for each segment

KVL) $\quad R_{1} i+R_{2} i-V_{\text {in }}=0$

$$
V_{i n} / i=\mathbf{R}_{1}+R_{\mathbf{2}}
$$

Example 2 KVL) $\quad V_{\mathbf{a b}}+V_{\mathbf{b c}}+V_{\mathbf{c d}}+V_{\mathbf{d a}}=\mathbf{0}$

Ohm's Law for each segment

$$
\begin{aligned}
& V_{\mathrm{ab}}=R_{1} i \\
& V_{\mathrm{bc}}=V_{i n 2} \\
& V_{\mathrm{cd}}=R_{2} i \\
& V_{\mathrm{da}}=-V_{i n}
\end{aligned}
$$

KVL) $\quad R_{1} i+R_{2} i=V_{i n 1}-V_{i n 2}$

$$
\frac{V_{i n 1}-V_{i n 2}}{i}
$$

Example 3
Find i

Equivalent Circuit
$(6+6) \mathrm{k} \Omega / / 6 \mathrm{k} \Omega=4 \mathrm{k} \Omega$

KVL) $\quad V_{\mathrm{ab}}+V_{\mathrm{bc}}+V_{\mathrm{cd}}+V_{\mathrm{da}}=\mathbf{0}$

$$
\begin{aligned}
-8 & +4 \mathrm{k} i_{b c}+0+4 \mathrm{k} i_{d a}=0 \\
8 & =8 \mathrm{k} i \\
\boldsymbol{i} & =\mathbf{1} \mathbf{m A}
\end{aligned}
$$

Loop Analysis

Loop analysis is a systematic procedure based on KVL to solve for currents in more complex circuits.

STEPS

- Identify loops in a circuit.
- Pick currents in clockwise direction
- Set up loop equations
- Solve system of linear equations to obtain unknown currents

Example 1 - Single loop circuit

Obtain the unknown current \boldsymbol{i}

KVL) $\quad V_{\mathrm{ab}}+V_{\mathrm{bc}}+V_{\mathrm{cd}}+V_{\mathrm{de}}+V_{\mathrm{ea}}=0$
Ohm's Law:

$$
2 i+0.8+2+0-3=0
$$

$$
i=0.1 \mathrm{~A}
$$

Example 2 - Two loops

Obtain the unknown currents \boldsymbol{i}_{1} and \boldsymbol{i}_{2}

Let's designate these nodes as "ground" g since they are at the same potential. We will not include in equations the potential between these nodes, because $=0$.

Example 2 - Two loops

Obtain the unknown currents i_{1} and i_{2}

LOOP \#1
KVL) $V_{\text {ab }}+V_{\text {bg }}+V_{\text {ga }}=\mathbf{0}$
$i_{\mathrm{ab}}=i_{1} \quad i_{\mathrm{bg}}=i_{1}-i_{2}$

Ohm's Law:
$2 \mathrm{k} i_{\mathrm{ab}}+1 \mathrm{k} i_{\mathrm{bg}}-5=0$
$2 \mathrm{k} i_{1}+1 \mathrm{k}\left(i_{1}-i_{2}\right)-5=0$

Example 2 - Two loops

Obtain the unknown currents i_{1} and i_{2}

KVL) $V_{b c}+V_{c g}+V_{g b}=\mathbf{0}$

$$
i_{\mathrm{ab}}=i_{1} \quad i_{\mathrm{bg}}=i_{1}-i_{2}
$$

$$
-1 \mathbf{k} i_{1}+4 \mathbf{k} i_{2}=2
$$

Example 2 - Two loops

Obtain the unknown currents i_{1} and \boldsymbol{i}_{2}

Solve system of equations
$3 k i_{1}-k i_{2}=5$
$-1 \mathrm{k} i_{1}+4 \mathrm{k} i_{2}=2$

$$
\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{3 k} & \mathbf{- 1 k} \\
-\mathbf{1 k} & \mathbf{4 k}
\end{array}\right]^{\mathbf{- 1}}\left[\begin{array}{l}
\mathbf{5} \\
\mathbf{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{2} \\
\mathbf{1}
\end{array}\right]_{25}
$$

Inverse of 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Inverse of A
Determinant
of A
Adjoint
of A

Example 2 - Two loops

The simple system of equations can be solved by substitution

$$
3 \mathrm{k} i_{1}-1 \mathrm{k} i_{2}=5 \quad-1 \mathrm{k} i_{1}+4 \mathrm{k} i_{2}=2
$$

$i_{2}=3 i_{1}-5 / \mathrm{k}$
$-i_{1}+4\left(3 i_{1}-5 / \mathrm{k}\right)=2 / \mathrm{k}$

Example 3 - Three loops

Obtain the unknown currents $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}$ and \boldsymbol{i}_{3}

NOTE: Loop 3 has a current source. It is not possible to write a loop equation for it because the voltage $V_{\boldsymbol{d} \boldsymbol{g}}$ depends on the rest of the circuit.

Example 3 - Three loops

$$
i_{3}=-2 \mathrm{~A}
$$

Obtain the unknown currents i_{1}, i_{2} and i_{3}

LOOP \#1

$$
\text { KVL) } \quad V_{\mathrm{ab}}+V_{\mathrm{bg}}+V_{\mathrm{g} a}=\mathbf{0}
$$

$$
i_{\mathrm{ab}}=i_{1} \quad i_{\mathrm{bg}}=i_{1}-i_{2}
$$

Ohm's Law:
$2 i_{\mathrm{ab}}+3 i_{\mathrm{bg}}-14=0$
$2 i_{1}+3\left(i_{1}-i_{2}\right)-14=0$

$$
5 i_{1}-3 i_{2}=14 \text { Eq. (1) }
$$

Example 3 - Three loops

$$
i_{3}=-2 \mathrm{~A}
$$

Obtain the unknown currents i_{1}, i_{2} and i_{3}

LOOP \#2
KVL) $V_{\text {bc }}+V_{\text {cg }}+V_{\text {gb }}=\mathbf{0}$

Ohm's Law:
$4 i_{\mathrm{bc}}+1 i_{\mathrm{cg}}+3 \boldsymbol{i}_{\mathrm{gb}}=\mathbf{0}$
$4 i_{2}+1\left(i_{2}-i_{3}\right)+3\left(i_{2}-i_{1}\right)=0$
$3 i_{1}-8 i_{2}=2$
Eq. (2)

Example 3 - Three loops

$$
i_{3}=-2 \mathrm{~A}
$$

Obtain the unknown currents i_{1}, i_{2} and i_{3}

Solve system of equations
$5 i_{1}-3 i_{2}=14$
$3 i_{1}-8 i_{2}=2$

$$
\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{ll}
5 & -3 \\
3 & -8
\end{array}\right]^{-1}\left[\begin{array}{c}
14 \\
2
\end{array}\right]=\left[\begin{array}{l}
3.42 \\
1.03
\end{array}\right] \mathrm{A}
$$

Example 3 - Three loops

The simple system of equations can be solved by substitution

$$
5 i_{1}-3 i_{2}=14
$$

$$
3 i_{1}-8 i_{2}=2
$$

$$
i_{2}=\left(5 i_{1}-14\right) / 3 \quad 3 i_{1}-8\left(5 i_{1}-14\right) / 3=2
$$

$$
i_{1}-\left(40 i_{1}-112\right) / 9=2 / 3
$$

$$
3 . \overline{4} i_{1}=11 . \overline{7}
$$

$$
i_{1}=3.419 \mathrm{~A}
$$

$i_{2}=\left(5 i_{1}-14\right) / 3$
$i_{2}=5.6989-4 . \overline{6}$
$i_{2}=1.032 \mathrm{~A}$

