ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 5 MWF – 12:00pm

Prof. Umberto Ravaioli

2062 ECE Building

Lecture 5 - Summary

Learning Objectives

- **1. Use loop analysis method to compute loop currents**
- **2. Understand "Superloops"**
- **3. Solve circuits with current sources**
- **4. Derive voltage division formula and analyze the limitations of voltage divider**

Obtain the unknown currents i_1 and i_2

Let's designate these nodes as "ground" g since they are at the same potential. We will not include in equations the potential between these nodes, because = 0.

Obtain the unknown currents i_1 and i_2

Obtain the unknown currents \boldsymbol{i}_1 **and** \boldsymbol{i}_2

Obtain the unknown currents i_1 and i_2

Inverse of 2×2 matrix

The simple system of equations can be solved by substitution

$$
\begin{array}{|rcll|}\n\hline\n3k i_1 - 1k i_2 & = 5 & -1k i_1 + 4k i_2 & = 2 \\
i_2 & = 3i_1 - 5/k & -i_1 + 4(3i_1 - 5/k) & = 2/k \\
&\qquad \qquad 11i_1 - 20/k & = 2/k \\
&\qquad \qquad 11i_1 & = 22/k \\
&\qquad \qquad \boxed{i_1 = 2 \text{ mA}} \\
i_2 & = 3 \times 2/k - 5/k \\
i_2 & = 1 \text{ mA}\n\end{array}
$$

Obtain the unknown currents \boldsymbol{i}_1 , \boldsymbol{i}_2 and \boldsymbol{i}_3

NOTE: Loop 3 has a current source. It is not possible to write a loop equation for it because the voltage V_{dg} depends on the rest of the circuit.

 $i_3 = -2A$

Obtain the unknown currents i_1 , i_2 and i_3

 $i_3 = -2A$

Obtain the unknown currents \boldsymbol{i}_1 **,** \boldsymbol{i}_2 **and** \boldsymbol{i}_3

 $i_3 = -2A$

Obtain the unknown currents i_1 , i_2 and i_3

The simple system of equations can be solved by substitution

$$
\begin{array}{c|c}\n5 i_1 - 3 i_2 = 14 & 3 i_1 - 8 i_2 = 2 \\
i_2 = (5 i_1 - 14)/3 & 3 i_1 - 8 (5 i_1 - 14)/3 = 2 \\
& i_1 - (40 i_1 - 112)/9 = 2/3 \\
& 3.\overline{4} i_1 = 11.\overline{7} \\
& i_2 = (5 i_1 - 14)/3 \\
& i_2 = 5.6989 - 4.\overline{6} \\
\hline\n i_2 = 1.032 \text{ A}\n\end{array}
$$

Voltage across a current source

The following elementary examples show how the voltage across a current source depends on the circuit connected to it.

Power absorbed by resistor

Superloops

It is not possible to write an equation for a loop with a current source in a branch. The voltage across the current source is not as easily determined as for a resistor or a voltage source.

A way to get around this is to use a bigger loop or "superloop" in which the KVL can still be used.

17 **The two loops have a current source in the common branch and loop equations cannot be formulated.**

Define a "superloop". Note that nodes a, a', a" have same potential. Also b and c have same potential.

Superloop equation \vert KVL) $V_{ab} + V_{bc} + V_{cd} + V_{da} = 0 \vert$

Ohm's Law

Currents at node a'

$$
\frac{5k i_2 + 2k i_1 = 10}{2k i_1 + 5k i_2 = 10}
$$
 Eq. (1)

$$
\frac{i_1 - i_2 = 2 \text{ mA}}{4 \text{ Eq. (2)}}
$$

Solve the equations

$$
\boxed{2k i_1 + 5k i_2 = 10}
$$

$$
i_1 - i_2 = 2 \text{ mA}
$$

$$
\begin{bmatrix} 2k & 5k \\ 1 & -1 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 10 \\ 2m \end{bmatrix}
$$

Simplify to

$$
\begin{bmatrix} 2 & 5 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 10m \\ 2m \end{bmatrix}
$$

Final result

$$
\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 2.857 \\ 0.857 \end{bmatrix}
$$
mA

Alternative notation for Voltage

So far, we have used the notation below to represent the voltage between two points A and B.

Alternative notation for Voltage

Another very common representation indicates the reference positive and negative potential location.

$$
V = V_{AB} = V_A - V_B
$$

Example – Find Voltages V_1 **,** V_2 **,** V_3

Voltage Divider

$$
V_1 = V_{AB} \& V_2 = V_{BC}
$$

$$
i = \frac{V_{in}}{R_1 + R_2}
$$

$$
V_{AB} = i_{AB}R_1 = iR_1
$$

$$
V_1 = \frac{V_{in}R_1}{R_1 + R_2}
$$

$$
V_{BC} = i_{BC}R_2 = iR_2
$$

$$
V_2 = \frac{V_{in}R_2}{R_1 + R_2}
$$

Example - Compute Voltage V_{out}

$$
V_{out} = \frac{V_{in}R_2}{R_1 + R_2}
$$

$$
V_{out} = \frac{10 \times 1}{1 + 1} = 5V
$$

$$
i = \frac{V_{in}}{R_1 + R_2}
$$

$$
i = \frac{10}{1 + 1} = 5 A
$$

Example $-$ **Compute Voltage** V_{out}

28 **Question: Voltage results are identical. Which of the two realizations do you prefer?**

Example - Find V_1 and V_2 for these two cases

Mechanical analogy

Equivalent to =

Across each resistor there is a voltage drop

$$
V_k = \frac{R_k}{R_{eq}} \cdot V_T
$$

The larger the resistor the larger the drop.

32

Have you ever noticed the polarity markings on d.c. power supplies?

Ground reference is negative terminal

\n
$$
V^- \left(\begin{array}{cc} \bullet \\ \bullet \end{array} \right) V^+
$$

Ground reference

\n
$$
V^+
$$

\n V^-

\n V^-

Possible Loops & Superloops

35

 2Ω

 Ω -2.6V + 1 $\Omega(i_1 - i_2)$ + 1 $\Omega(i_1 - i_3)$ + 1 $\Omega(i_1 = 0)$

\bigodot $-2.6V + 1\Omega i_2 + 2\Omega i_3 + 1\Omega i_1 = 0$

 $\begin{array}{c} \boxed{3} \end{array}$ $1\Omega i_2 + 2\Omega i_3 + 1\Omega(i_3 - i_1) + 1\Omega(i_2 - i_1) = 0$

After simplifications

$$
2 - 2.6 + 3i1 - i2 - i3 = 0
$$

\n2 - 2.6 + i₂ + 2 i₃ + i₁ = 0
\n3 2i₂ + 3 i₃ - 2i₁ = 0
\n4 i₂ + 2 = i₃

We have three unknowns, only two of the first three equations are needed

$$
\begin{array}{c}\n\textcircled{1} \quad -2.6 + 3i_1 - i_2 - i_3 = 0 \\
\textcircled{3} \quad 2i_2 + 3i_3 - 2i_1 = 0 \\
\textcircled{4} \quad i_2 + 2 = i_3\n\end{array}
$$

\n**(4)**\n
$$
i_3 = i_2 + 2
$$
\n

\n\n**(5)**\n
$$
2i_2 + 3(i_2 + 2) - 2i_1 = 0
$$
\n
$$
5i_2 + 6 - 2i_1 \rightarrow 0 \longrightarrow i_1 = 2.5i_2 + 3
$$
\n

\n\n**(6)**\n
$$
-2.6 + 3i_1 - i_2 - i_2 - 2 = 0
$$
\n
$$
-4.6 + 3i_1 - 2i_2 = 0
$$
\n
$$
-4.6 + 7.5i_2 + 9 - 2i_2 = 0
$$
\n
$$
4.4 + 5.5i_2 = 0
$$
\n
$$
i_2 = -0.8 \text{ A}
$$
\n
$$
i_1 = 1 \text{ A}
$$
\n
$$
i_3 = 1.2 \text{ A}
$$
\n

Verification: Substitute the results into loop and superloop KVL equations. The left hand sides should give zero.

Equal resistors, by simple symmetry

$$
\Rightarrow \boxed{V_2 = -V_3 = -V_4 = \frac{V_{in}}{3} = 3V}
$$

42

$$
\textbf{WS 2.2} \quad \boxed{V_{in} = 9V} \quad \boxed{R_1 = R_2 = R_3 = 3k\Omega}
$$

$$
V_1 = -3V
$$

$$
V_2 = -6V
$$

$$
V_3 = -9V
$$

Same circuit as in the previous problem, with a specified ground reference. **WS 2.3**

 $R_{eq} = 2R + 2R//2R + 3R = (2 + 1 + 3)R = 6R$

WS 2.4

Express V_1 and V_2 in terms of voltage V_{in} and resistors R_1 , R_2 , R_3

Another variation of the same circuit. Voltages are with respect to ground.

Apply voltage divider rules

$$
V_1 = V_{in} \frac{R_2 + R_3}{R_1 + R_2 + R_3}
$$

$$
V_2 = V_{in} \frac{R_3}{R_1 + R_2 + R_3}
$$

between two loops. It is hard to write separate loop equations without introducing new variables (e.g., voltage across the current source)

Start with Loop 2

1k i ₁ - 4k i ₂ + 4k i ₃ = 7 V	Eq Q		
Divide by 1kΩ	simpifies to: $i_1 - 4i_2 + 4i_3 = 7$ mA		
Solve the system	$i_1 - i_3 = 7$ mA	Eq Q	
$-i_1 + 6i_2 - 3i_3 = 0$	Eq Q		
$i_1 - 4i_2 + 4i_3 = 7$ mA	Eq Q		
$i_1 - 4i_2 + 4i_3 = i_1 - i_3$	$i_2 = \frac{5}{4}i_3$		
$-i_1 + 6\frac{5}{4}i_3 - 3i_3 = 0$	$i_1 = \frac{9}{2}i_3$		
9	$\frac{9}{2}i_3 - i_3 = 7$ mA	$i_3 = 2$ mA	$i_1 = 9$ mA
$i_2 = 2.5$ MA			

49