ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 7 MWF – 12:00pm

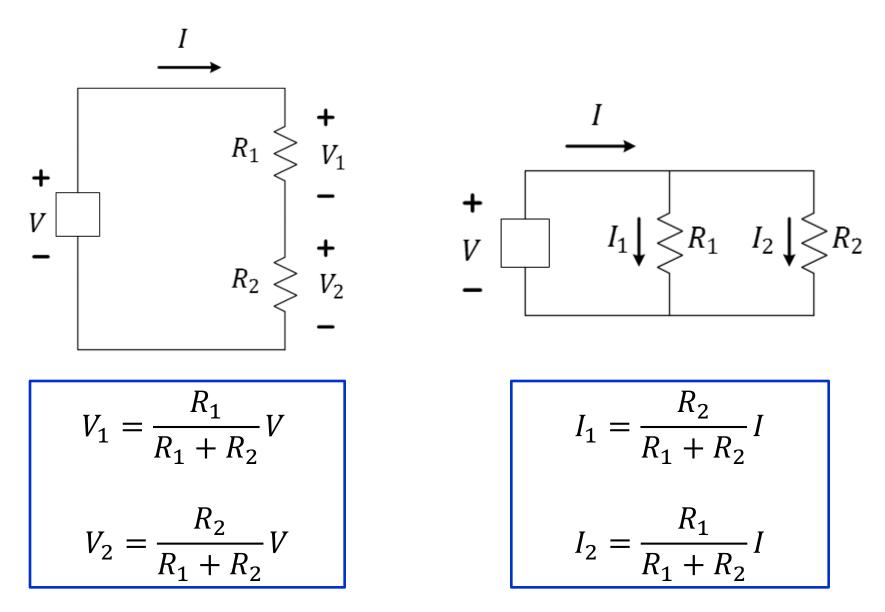
Prof. Umberto Ravaioli

2062 ECE Building

Lecture 7 – Summary

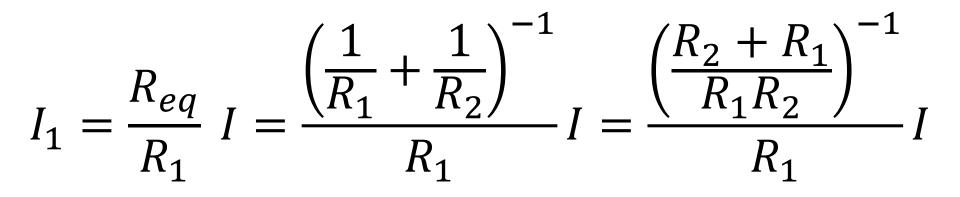
- **Learning Objectives**
- 1. Node analysis method to compute node voltages
- 2. Introduce the concept or "supernodes" to treat circuit branches with floating voltage sources (if time allows)

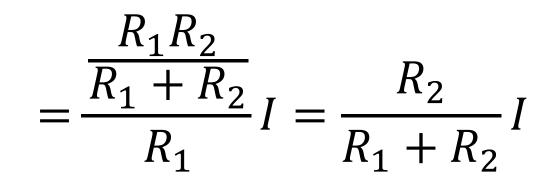
Voltage Division and Current Division for Two Resistors



Derivation for two parallel resistors

$$I_k = \frac{R_{eq}}{R_K} I$$





"Node Voltage Analysis" (based on KCL)

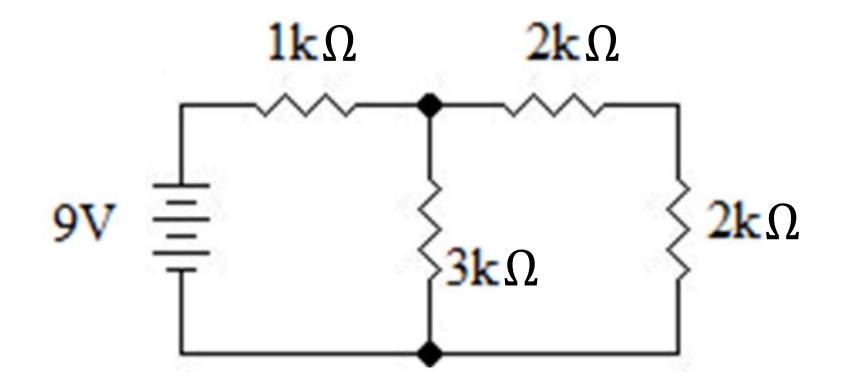
Here, we solve for voltage at nodes

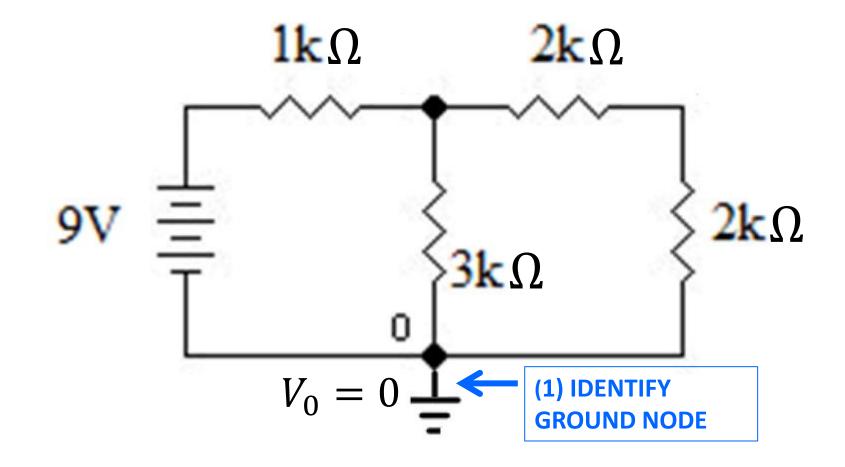
STEPS

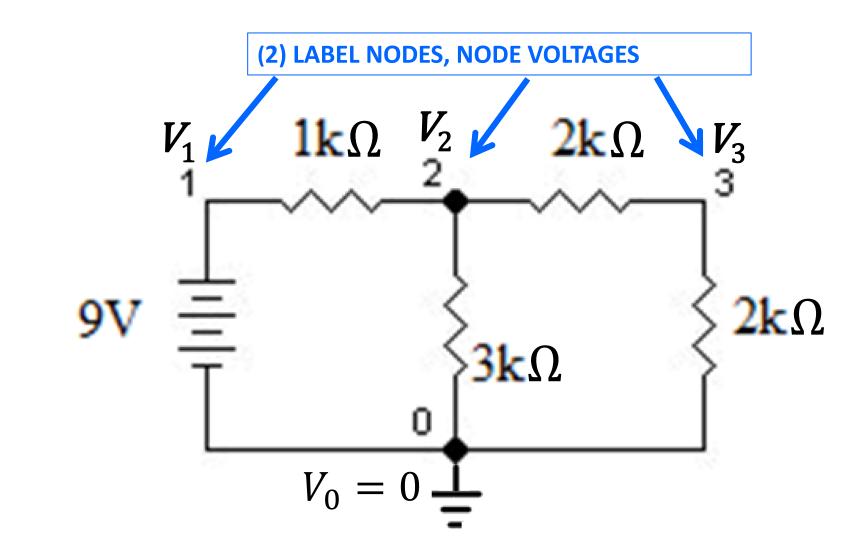
- Identify a node as reference ground (V = 0)
- Identify all other nodes and label them.
- Set up KCL equations at nodes (using Ohm's law to write currents in terms of voltages)
- Solve node equations to obtain voltages

Let's look at examples in detail.

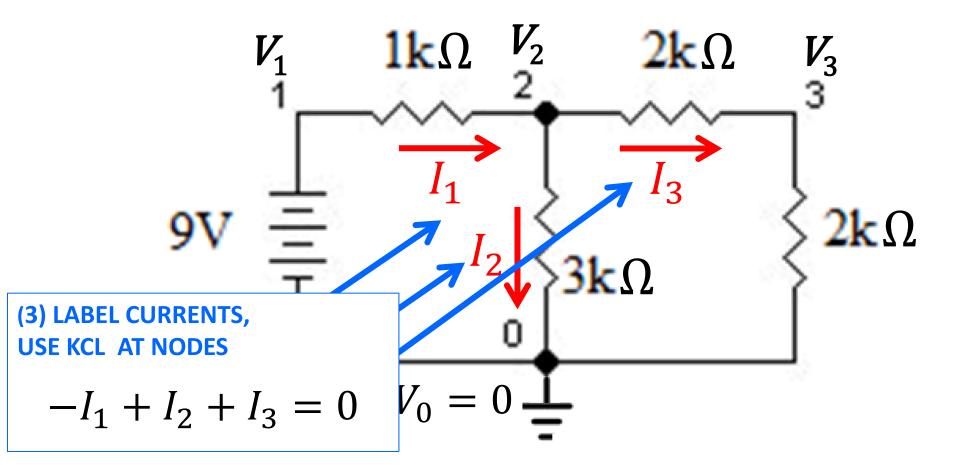
As a start, a very simple prototype



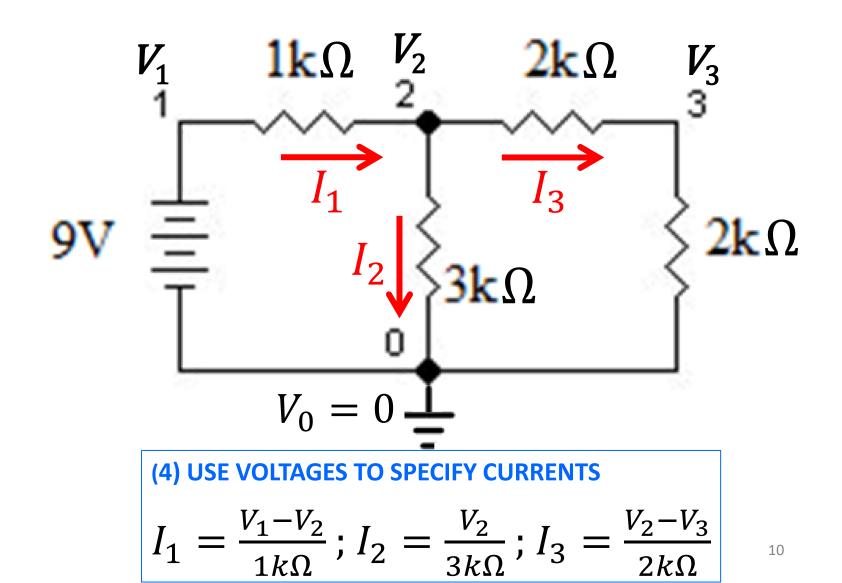




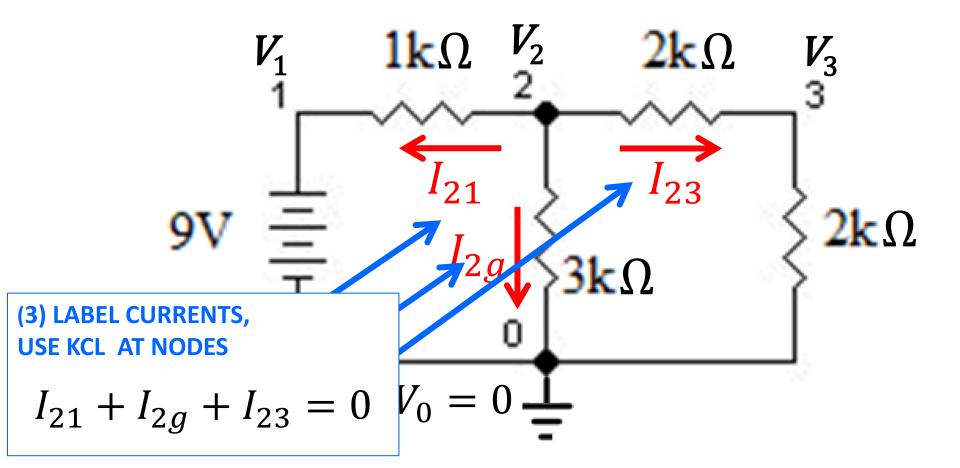
You could now assign a <u>fixed reference</u> for currents. This is also good to implement computer solvers.



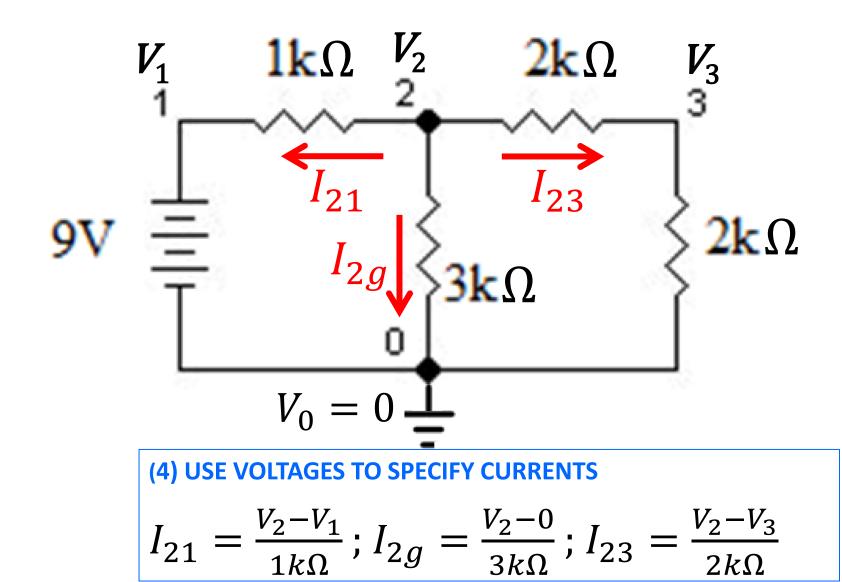
You could now assign a <u>fixed reference</u> for currents. This is also good to implement computer solvers.

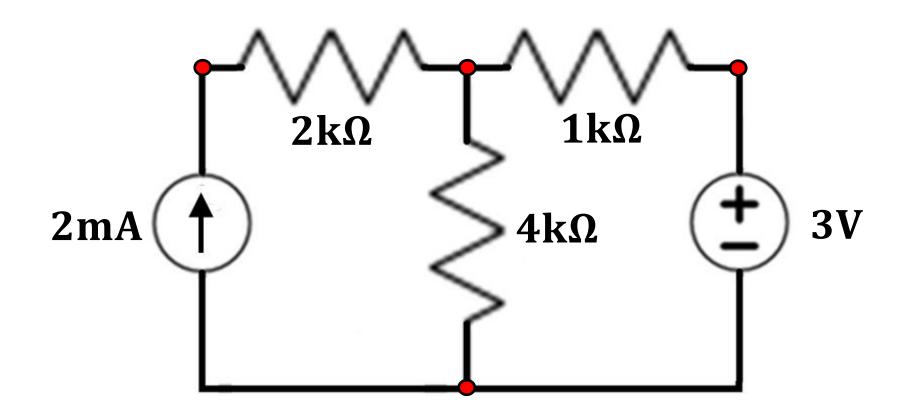


You could also define currents using indices between a specific node and neighboring ones <u>without specifying a fixed reference</u>. In this case it is good to write KCL with all outgoing currents.

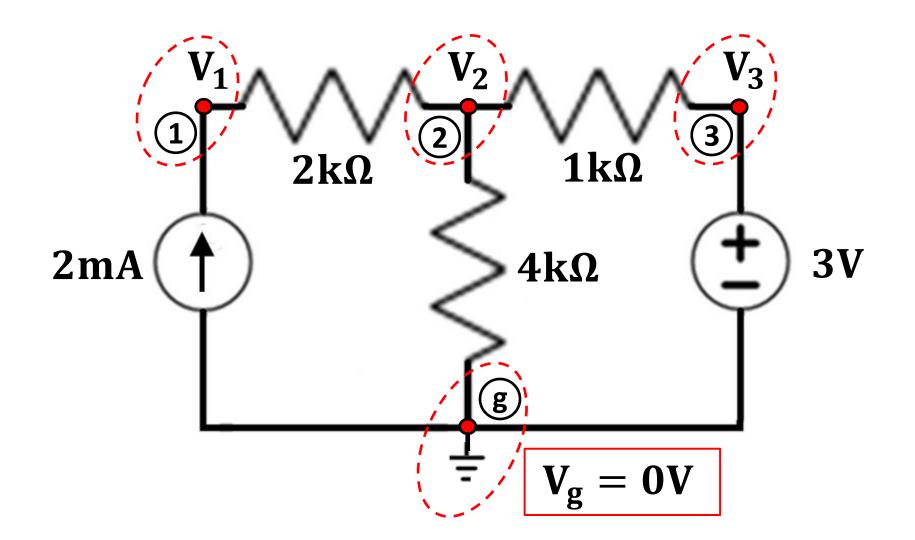


You could also define currents using indices between a specific node and neighboring ones <u>without specifying a fixed reference</u>. In this case it is good to write KCL with all outgoing currents.

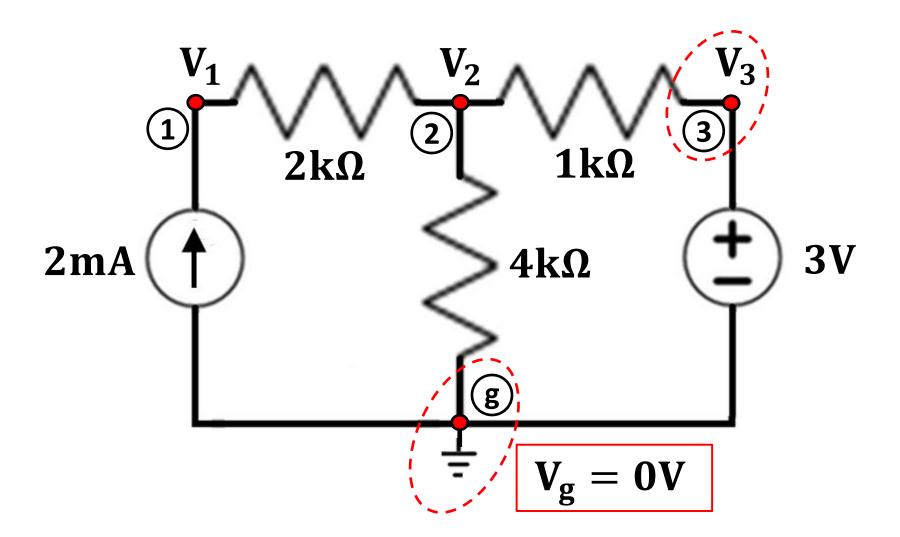




Example – Determine Voltages at circuit nodes We will identify currents between neighboring nodes

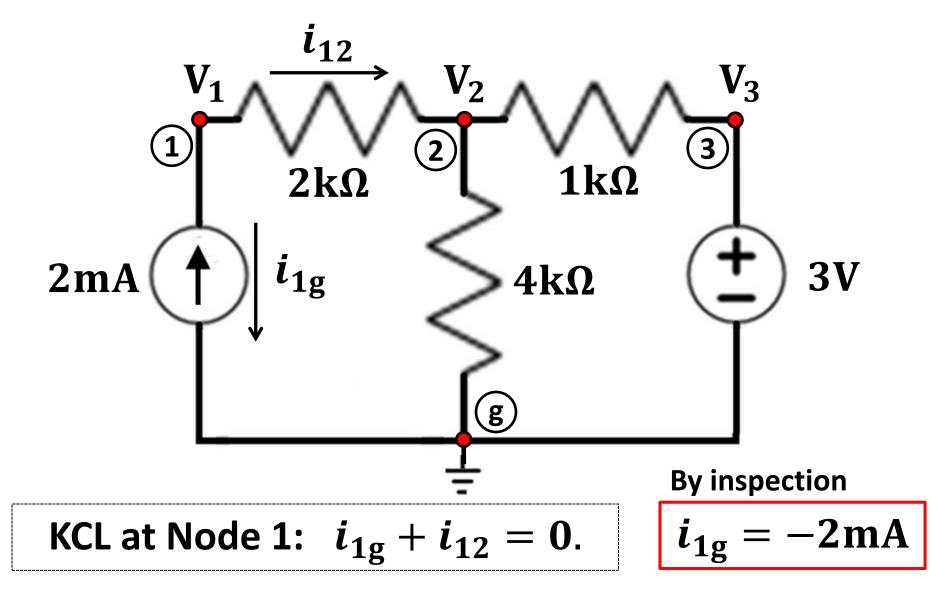


Choice of ground node at the terminal of a voltage source is a good strategy.

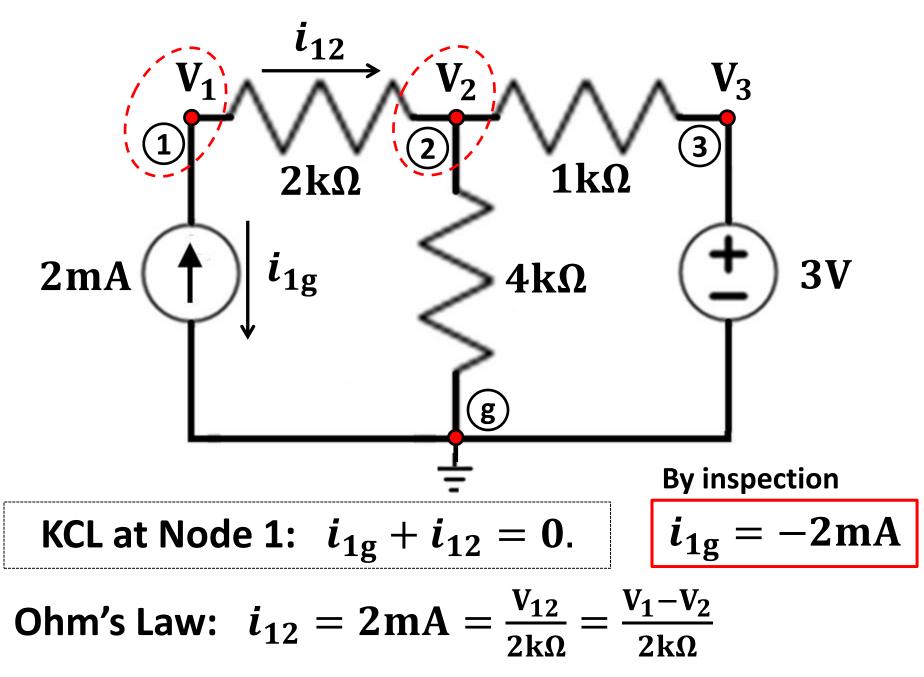


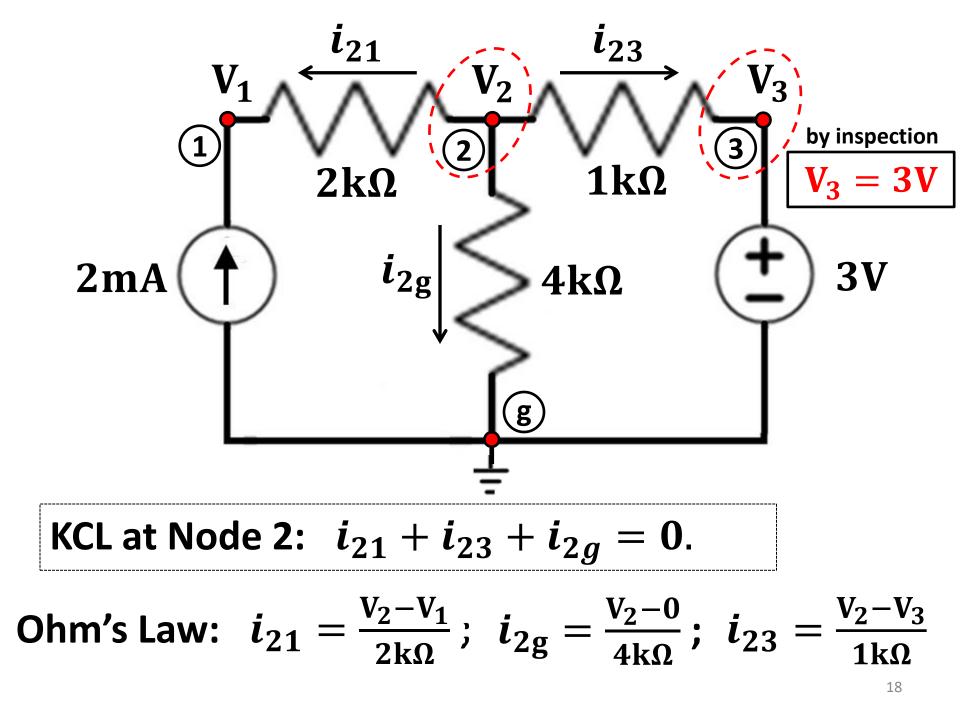
By inspection, $V_3 = 3V$. Need to find V_1 and V_2 .

 $V_{3g} = V_3 - V_g = 3 - 0 \rightarrow V_3 = 3V$



You may formulate the KCL equation in different equivalent ways, but it is good to have a consistent method.





$$\frac{\mathbf{V}_2 - \mathbf{V}_1}{2\mathbf{k}\Omega} = \mathbf{i}_{21} = -\mathbf{i}_{12} = -2\mathbf{m}\mathbf{A} \quad \longrightarrow \quad \frac{\mathbf{V}_2 - \mathbf{V}_1}{2} = -2\mathbf{V}$$

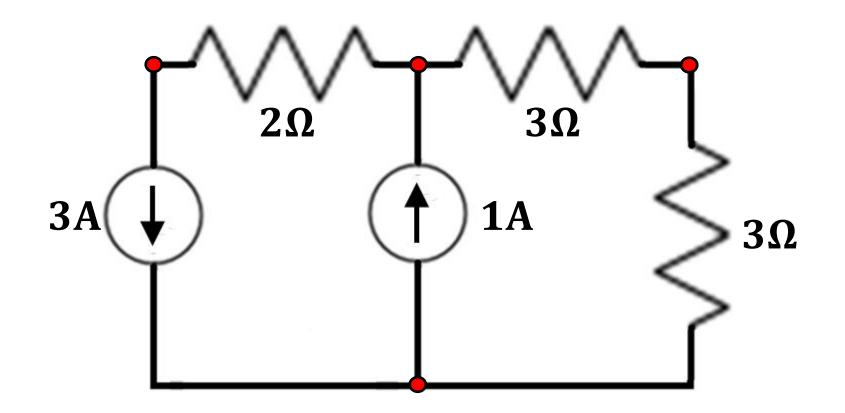
Node 1
$$2mA = \frac{V_{12}}{2k\Omega} = \frac{V_1 - V_2}{2k\Omega} \rightarrow V_1 - V_2 = 4V$$

Node 2 $\frac{V_2 - V_1}{2k\Omega} + \frac{V_2 - 0}{4k\Omega} + \frac{V_2 - V_3}{1k\Omega} = 0$
 $-2 + \frac{V_2}{4} + V_2 - 3 = 0 \rightarrow \frac{5}{4}V_2 = 5 \rightarrow V_2 = 4V$
Node 3 $V_3 = 3V$

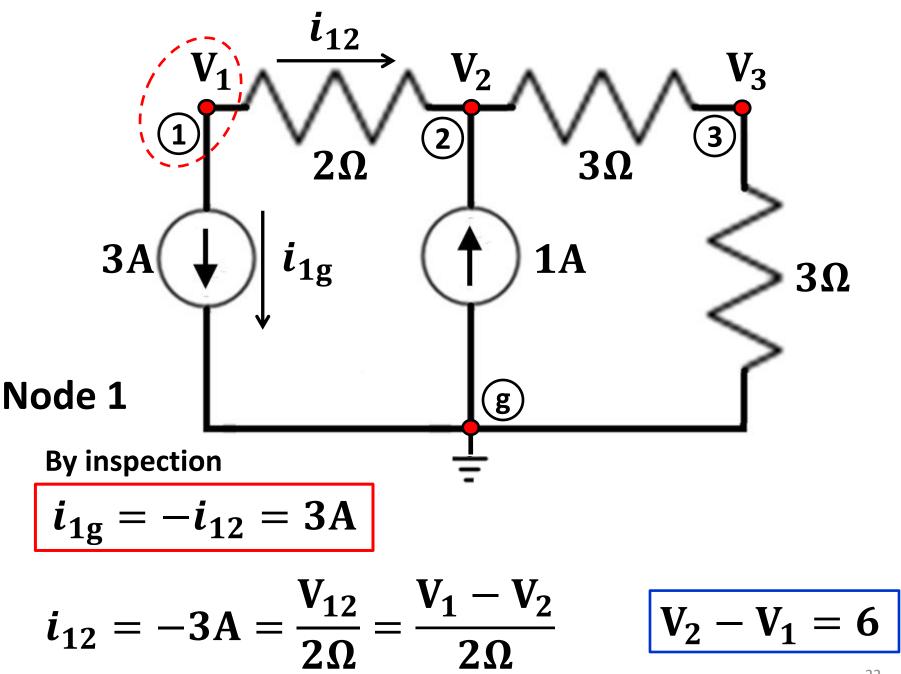
$$\frac{\mathbf{V}_2 - \mathbf{V}_1}{2\mathbf{k}\Omega} = \mathbf{i}_{21} = -\mathbf{i}_{12} = -2\mathbf{m}\mathbf{A} \quad \longrightarrow \quad \frac{\mathbf{V}_2 - \mathbf{V}_1}{2} = -2\mathbf{V}$$

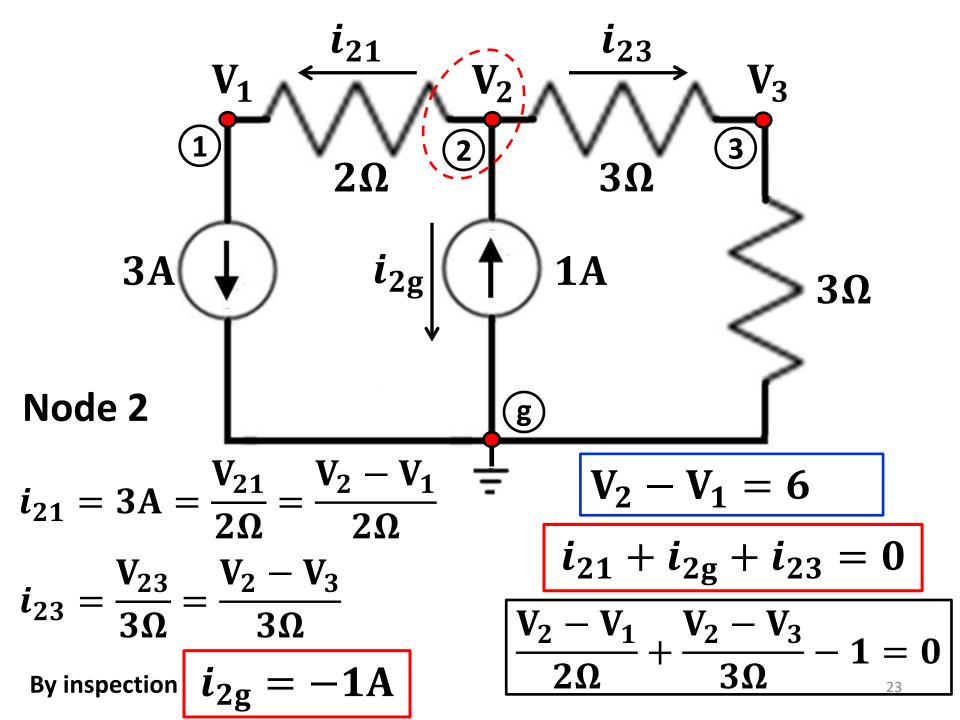
Node 1
$$2mA = \frac{V_{12}}{2k\Omega} = \frac{V_1 - V_2}{2k\Omega} \rightarrow V_1 - V_2 = 4V$$

Node 2 $\frac{V_2 - V_1}{2k\Omega} + \frac{V_2 - 0}{4k\Omega} + \frac{V_2 - V_3}{1k\Omega} = 0$
 $-2 + \frac{V_2}{4} + V_2 - 3 = 0 \rightarrow \frac{5}{4}V_2 = 5 \rightarrow V_2 = 4V$
Node 3 $V_3 = 3V$ $V_1 = 8V$



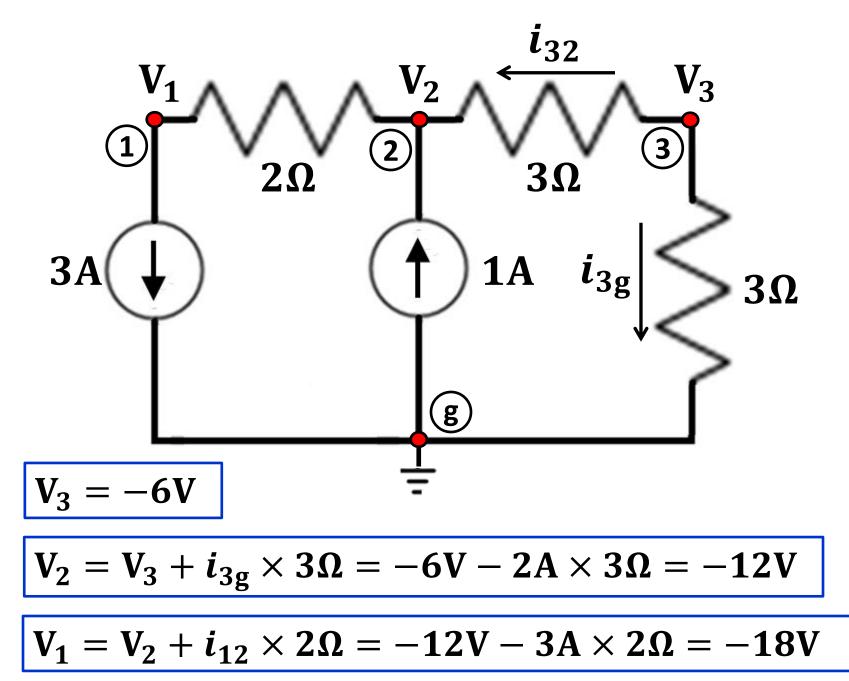
Example – Determine Voltages at circuit nodes



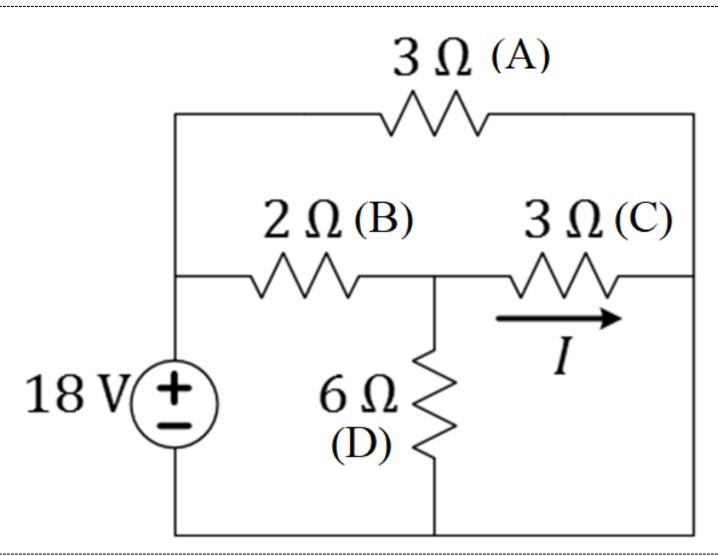


Node 3
$$i_{3g} = -i_{32} = \frac{V_{3g}}{3\Omega} = \frac{V_3 - 0}{3\Omega}$$

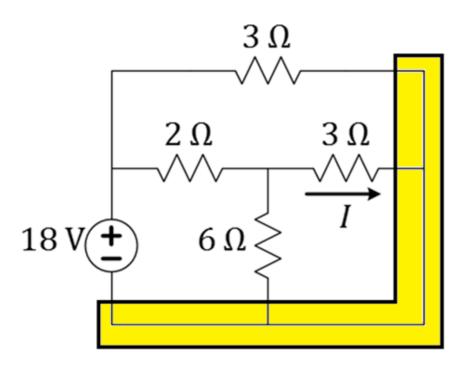
(g) $i_{3g} = -3A + 1A = -2A$
 $V_3 = i_{3g} \times 3\Omega = -2 \times 3 = -6V$



Find the labelled current *I*



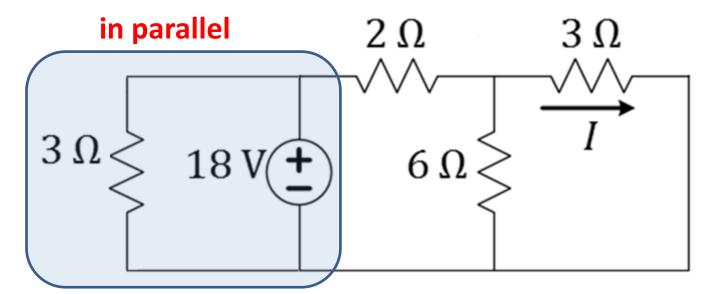
Q: Which resistor is in parallel with the voltage source?

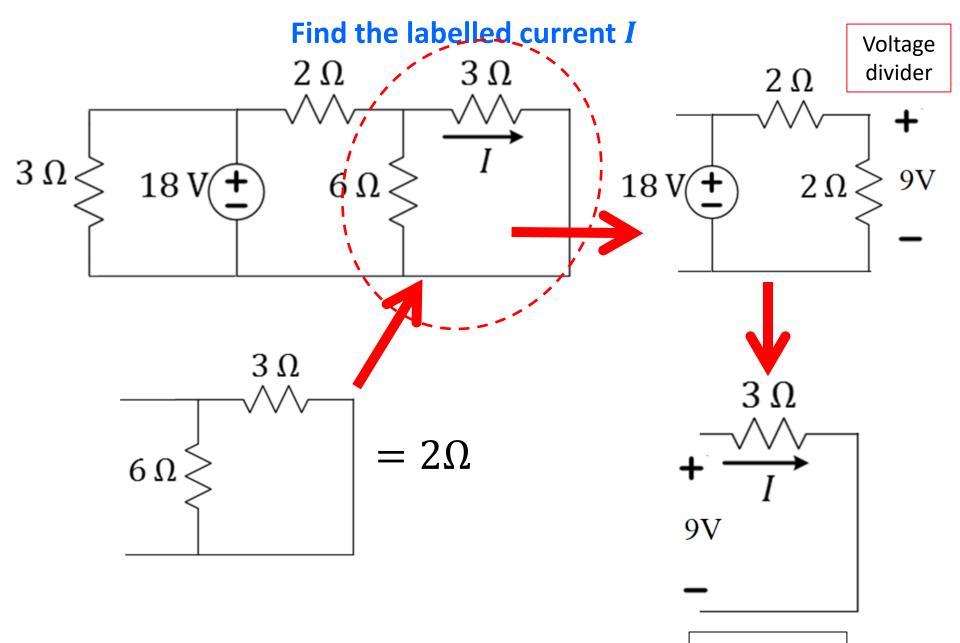


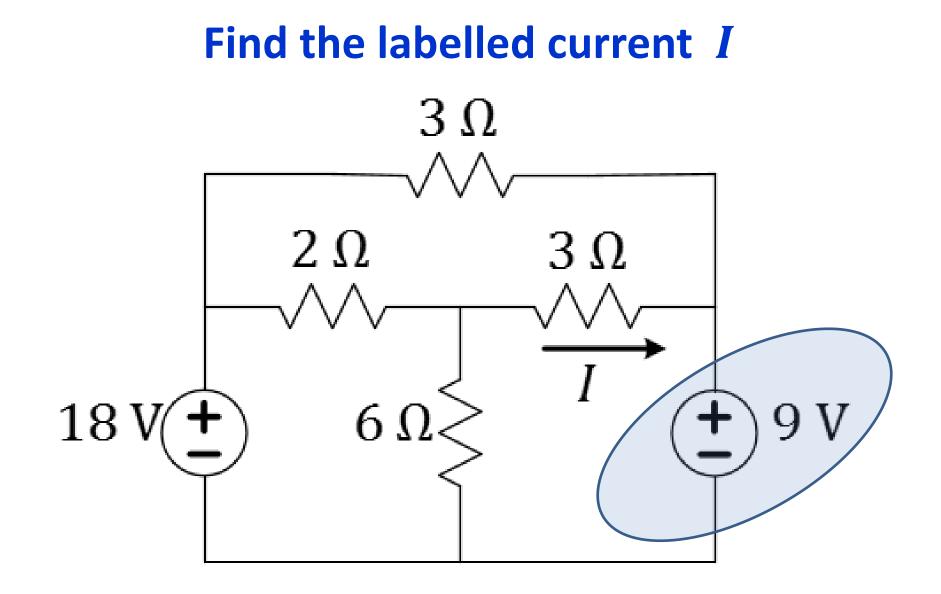
All these wires are at the same potential

This problem can be solved very quickly without node voltage analysis

We can rearrange the diagram as



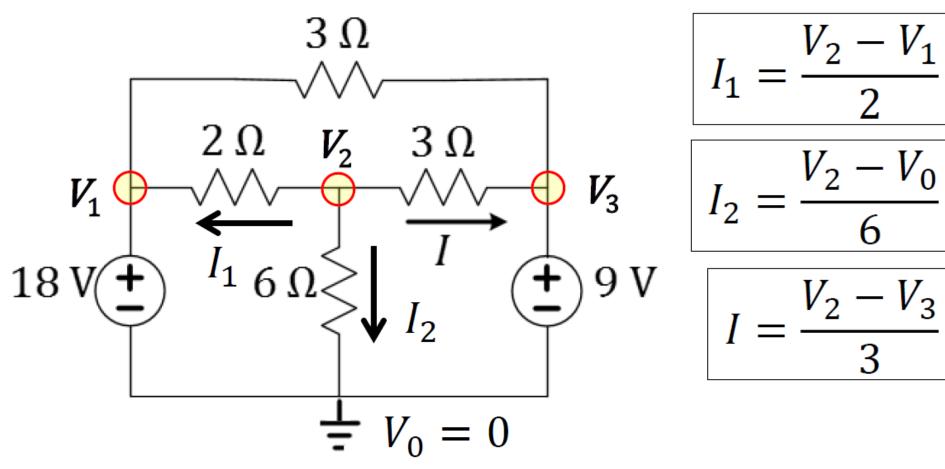




Now there is a second voltage source in this branch. Node voltage analysis is a good approach.

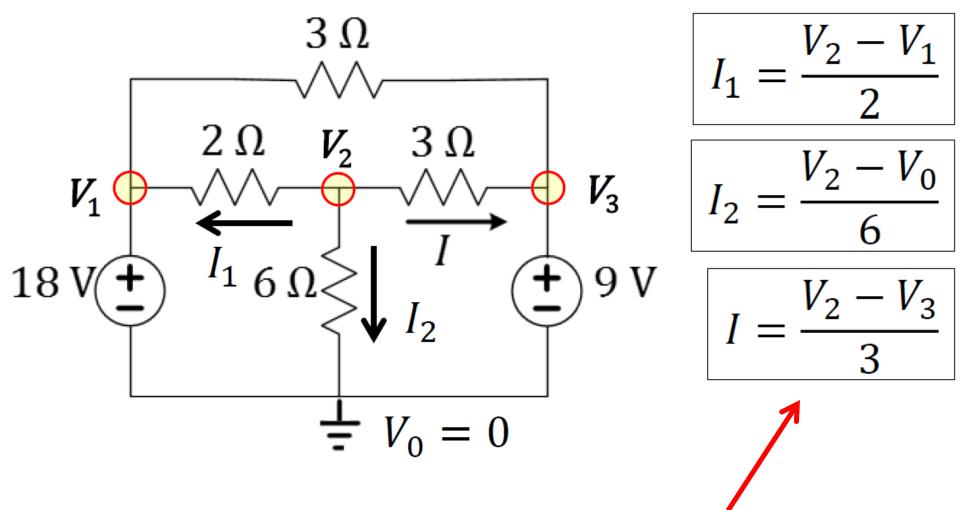
In this example and in the following ones, we are going to specify <u>fixed references for</u> <u>the currents</u> in each of the circuit branches.

As mentioned earlier, this is a good approach for implementation of computer circuit solution using algorithms based on linear algebra.

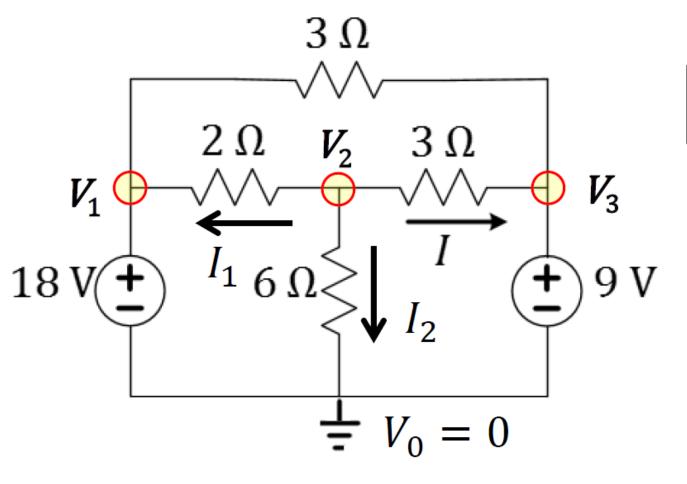


Ground reference – zero potential

KCL – node 2 $I_1 + I_2 + I = 0$



Now we should be comfortable with the method, so we can write the currents directly in terms of Amperes, without having to write all the time Ω .



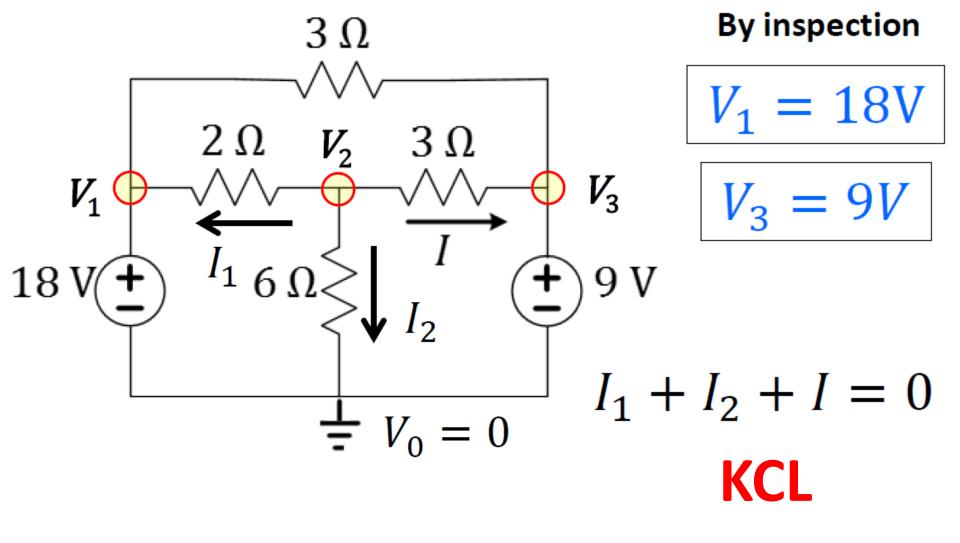
By inspection

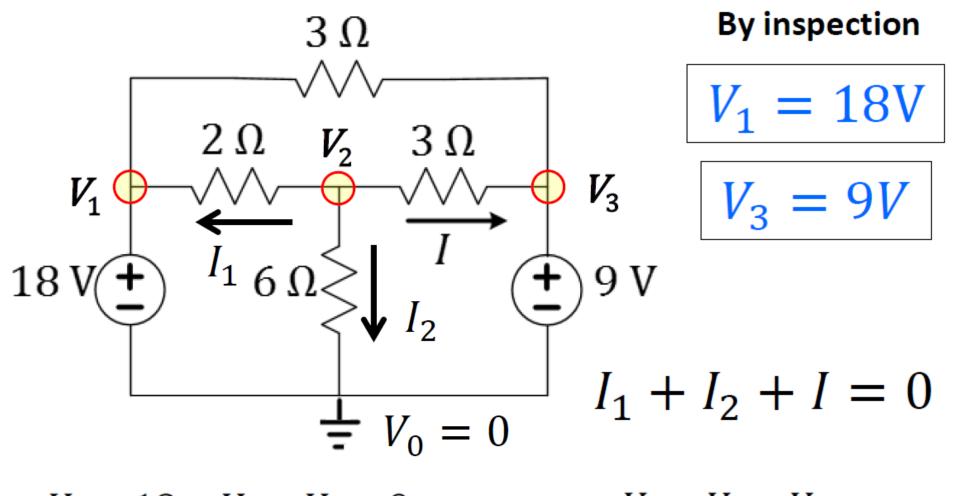
 $V_1 = 18V$

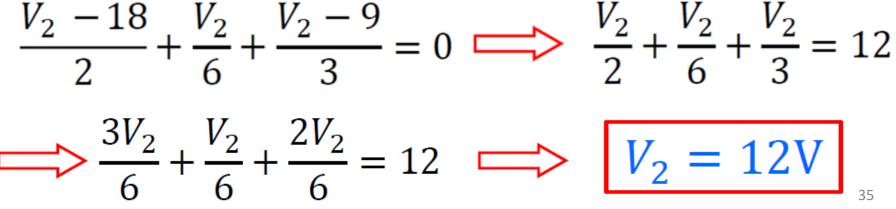
 $V_3 = 9V$

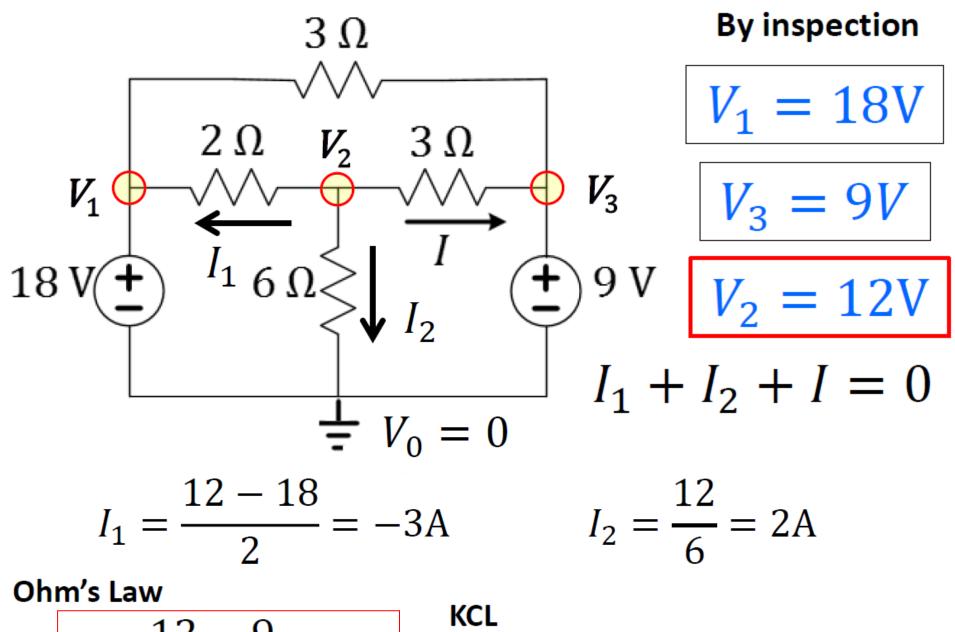
We only need to solve for V₂.

With the loop method, we would need to write 3 loop equation!





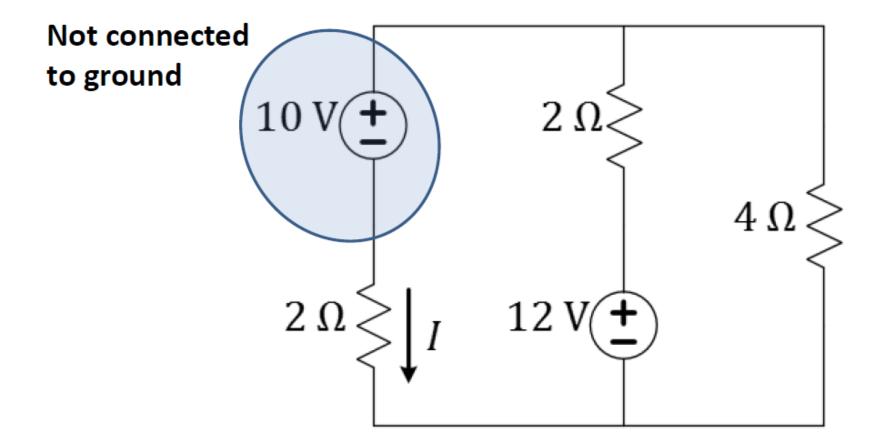




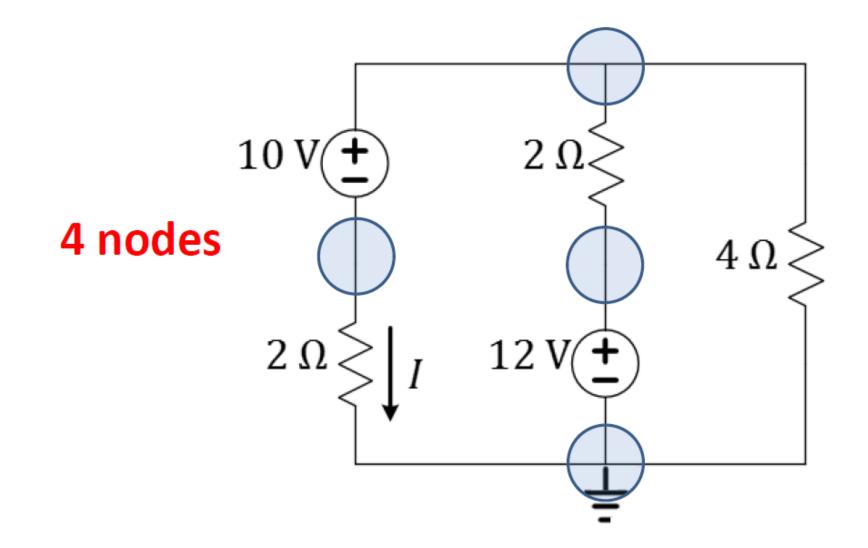
$$I = \frac{12 - 9}{3} = 1A$$

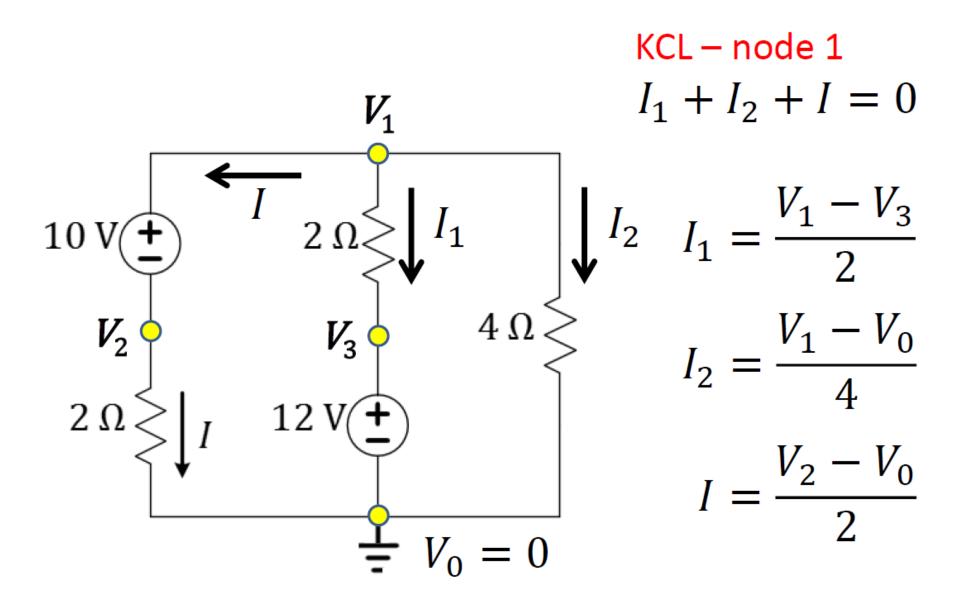
$$I = 3A - 2A = 1A$$

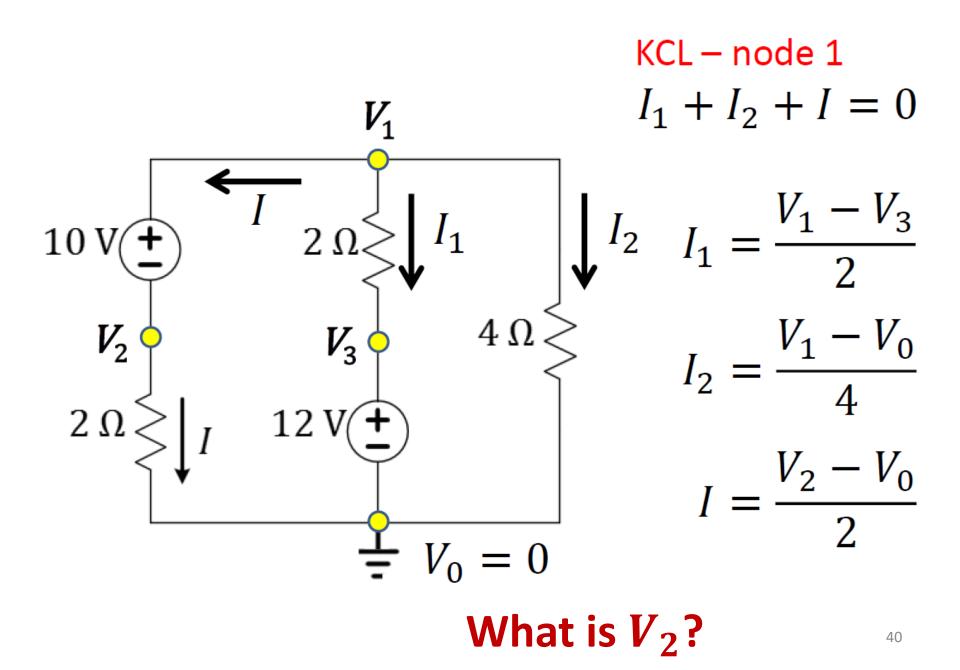
Floating voltage source



Find Current I



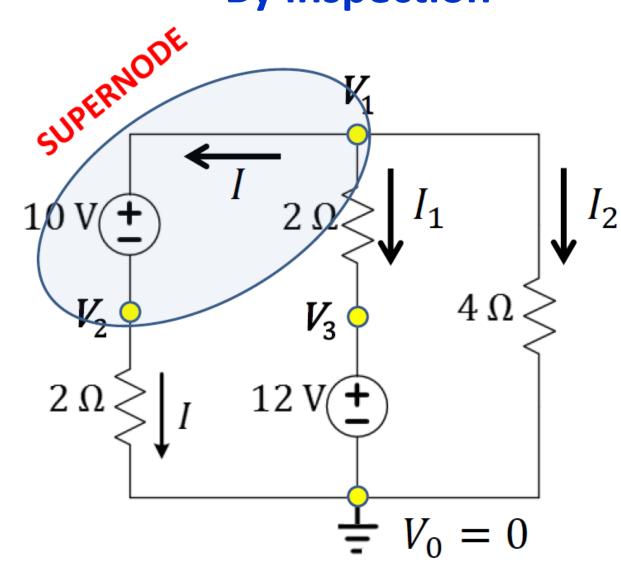




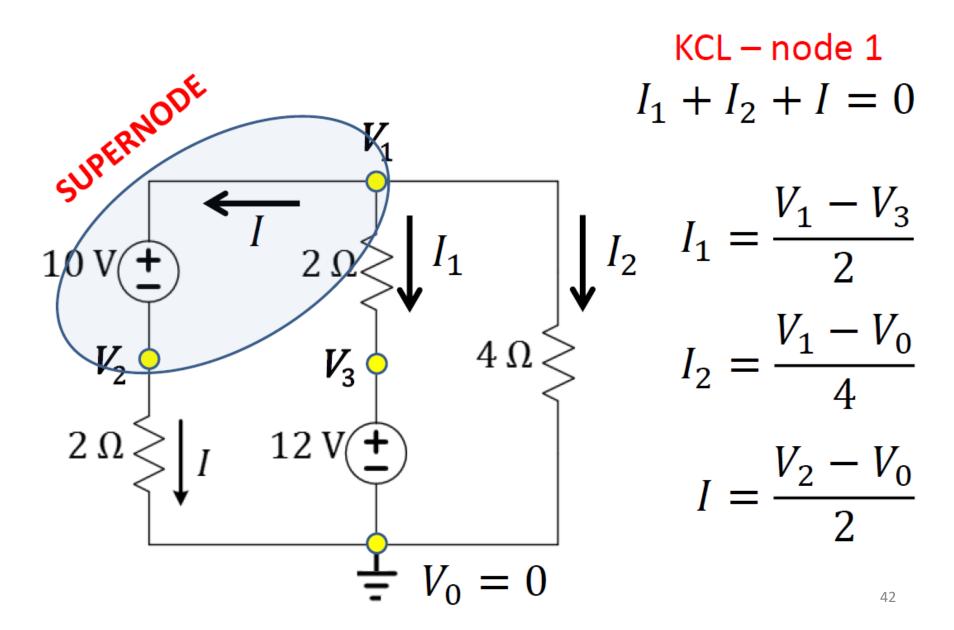
$$V_2 = V_1 - 10$$

$$V_3 = 12V$$

By inspection



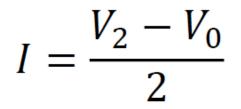
$$V_2 = V_1 - 10$$
 $V_3 = 12V_3$



 $V_2 = V_1 - 10$

 $V_3 = 12V$

 $I_1 = \frac{V_1 - V_3}{2} \qquad I_2 = \frac{V_1 - V_0}{4} \qquad I = \frac{V_2 - V_0}{2}$



KCL – node 1 $I_1 + I_2 + I = 0$

$$\frac{V_1 - 12}{2} + \frac{V_1}{4} + \frac{V_2}{2} = 0$$

$$-12 + \frac{3V_1}{2} + V_2 = 0$$
$$-12 + \frac{3V_1}{2} - V_1 - 10 = 0$$

$$V_1 = 8.8V$$

$$V_{2} = V_{1} - 10 \qquad V_{3} = 12V \qquad V_{1} = 8.8V \qquad V_{2} = -1.2V$$

$$I_{1} = \frac{V_{1} - V_{3}}{2} \qquad I_{2} = \frac{V_{1} - V_{0}}{4} \qquad I = \frac{V_{2} - V_{0}}{2}$$

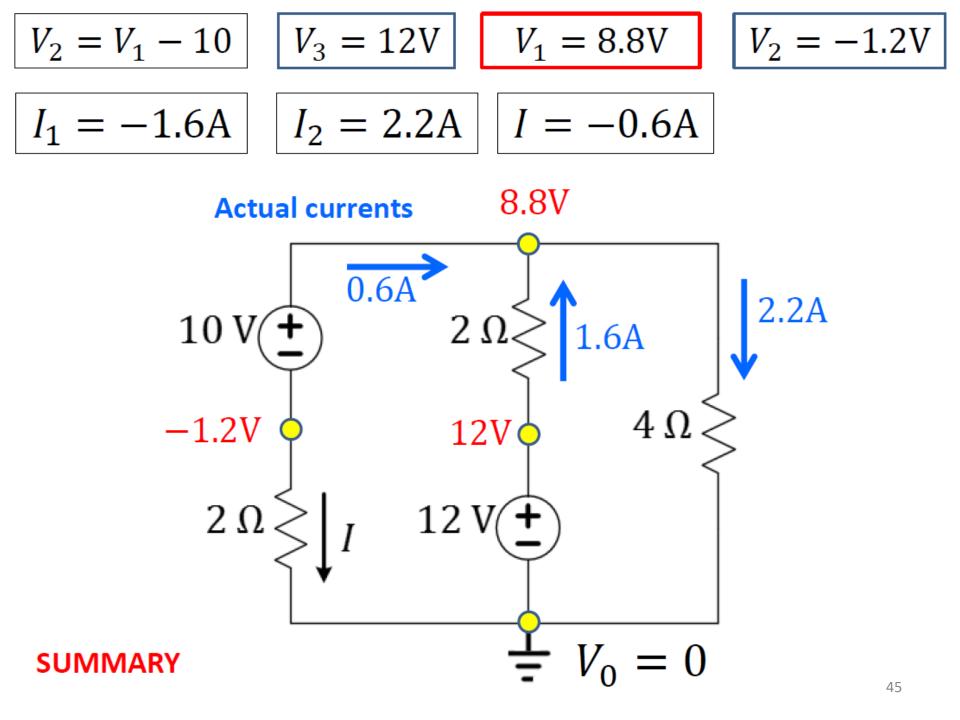
$$I_1 = \frac{V_1 - V_3}{2} = -\frac{3.2}{2} = -1.6A$$

$$I_2 = \frac{V_1}{4} = \frac{8.8}{4} = 2.2A$$

$$I = \frac{V_2}{2} = -0.6A$$

Verify KCL

$$I = -I_1 - I_2 \implies I = 1.6 - 2.2 = -0.6A$$



What if we swap elements about node 2?

$$V_2 = 10$$
 $V_3 = 12V$ $V_1 = 8.8V$ $V_1 - V_2 = -1.2V$

