ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 7
MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 7 - Summary

Learning Objectives

1. Node analysis method to compute node voltages
2. Introduce the concept or "supernodes" to treat circuit branches with floating voltage sources (if time allows)

Voltage Division and Current Division for Two Resistors

$$
\begin{aligned}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} V \\
& V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}=\frac{R_{2}}{R_{1}+R_{2}} I \\
& I_{2}=\frac{R_{1}}{R_{1}+R_{2}} I
\end{aligned}
$$

Derivation for two parallel resistors

$$
I_{k}=\frac{R_{e q}}{R_{K}} I
$$

$$
I_{1}=\frac{R_{e q}}{R_{1}} I=\frac{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}}{R_{1}} I=\frac{\left(\frac{R_{2}+R_{1}}{R_{1} R_{2}}\right)^{-1}}{R_{1}} I
$$

$$
=\frac{\frac{R_{1} R_{2}}{R_{1}+R_{2}}}{R_{1}} I=\frac{R_{2}}{R_{1}+R_{2}} I
$$

"Node Voltage Analysis" (based on KCL)

Here, we solve for voltage at nodes
STEPS

- Identify a node as reference ground ($V=0$)
- Identify all other nodes and label them.
- Set up KCL equations at nodes (using Ohm's law to write currents in terms of voltages)
- Solve node equations to obtain voltages

Let's look at examples in detail.

As a start, a very simple prototype

You could now assign a fixed reference for currents. This is also good to implement computer solvers.

You could now assign a fixed reference for currents. This is also good to implement computer solvers.

You could also define currents using indices between a specific node and neighboring ones without specifying a fixed reference. In this case it is good to write KCL with all outgoing currents.

You could also define currents using indices between a specific node and neighboring ones without specifying a fixed reference. In this case it is good to write KCL with all outgoing currents.

(4) USE VOLTAGES TO SPECIFY CURRENTS

$$
I_{21}=\frac{V_{2}-V_{1}}{1 k \Omega} ; I_{2 g}=\frac{V_{2}-0}{3 k \Omega} ; I_{23}=\frac{V_{2}-V_{3}}{2 k \Omega}
$$

Example - Determine Voltages at circuit nodes We will identify currents between neighboring nodes

Choice of ground node at the terminal of a voltage source is a good strategy.

By inspection, $\mathbf{V}_{\mathbf{3}}=\mathbf{3 V}$. Need to find $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$.

$$
V_{3 \mathrm{~g}}=\mathrm{V}_{3}-\mathrm{V}_{\mathrm{g}}=3-0 \rightarrow \mathbf{V}_{3}=\mathbf{3 V}
$$

You may formulate the KCL equation in different equivalent ways, but it is good to have a consistent method.

Ohm's Law: $i_{12}=2 \mathrm{~mA}=\frac{\mathrm{V}_{12}}{2 \mathrm{k} \Omega}=\frac{\mathrm{V}_{1}-\mathrm{V}_{2}}{2 \mathrm{k} \Omega}$

KCL at Node 2: $\boldsymbol{i}_{21}+\boldsymbol{i}_{23}+\boldsymbol{i}_{2 g}=\mathbf{0}$.
Ohm's Law: $i_{21}=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{2 \mathrm{k} \Omega} ; \quad i_{2 \mathrm{~g}}=\frac{\mathrm{v}_{2}-0}{4 \mathrm{k} \Omega} ; \quad i_{23}=\frac{\mathrm{V}_{2}-\mathrm{V}_{3}}{1 \mathrm{k} \Omega}$

$$
\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{2 \mathrm{k} \Omega}=i_{21}=-i_{12}=-2 \mathrm{~mA} \rightarrow \frac{\mathrm{~V}_{2}-\mathrm{V}_{1}}{2}=-2 \mathrm{~V}
$$

Node $1 \quad 2 \mathrm{~mA}=\frac{\mathrm{V}_{12}}{2 \mathrm{k} \Omega}=\frac{\mathrm{V}_{1}-\mathrm{V}_{2}}{2 \mathrm{k} \Omega} \rightarrow \mathrm{V}_{1}-\mathrm{V}_{2}=4 \mathrm{~V}$
Node 2

$$
\frac{V_{2}-V_{1}}{2 k \Omega}+\frac{V_{2}-0}{4 k \Omega}+\frac{V_{2}-V_{3}}{1 k \Omega}=0
$$

$$
\begin{aligned}
& -2+\frac{\mathrm{V}_{2}}{4}+\mathrm{V}_{2}-3=0 \rightarrow \frac{5}{4} \mathrm{~V}_{2}=5 \rightarrow \mathrm{~V}_{2}=4 \mathrm{~V} \\
& \text { Node } 3 \\
& \mathrm{~V}_{3}=3 \mathrm{~V}
\end{aligned}
$$

$$
\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{2 \mathrm{k} \Omega}=i_{21}=-i_{12}=-2 \mathrm{~mA} \rightarrow \frac{\mathrm{~V}_{2}-\mathrm{V}_{1}}{2}=-2 \mathrm{~V}
$$

Node $1 \quad 2 \mathrm{~mA}=\frac{\mathrm{V}_{12}}{2 \mathbf{k} \Omega}=\frac{\mathrm{V}_{\mathbf{1}}-\mathrm{V}_{\mathbf{2}}}{2 \mathbf{k} \Omega} \rightarrow \mathrm{~V}_{1}-\mathrm{V}_{\mathbf{2}}=4 \mathrm{~V}$
Node 2

$$
\frac{\mathbf{V}_{2}-V_{1}}{2 \mathbf{k} \Omega}+\frac{\mathbf{V}_{2}-\mathbf{0}}{4 \mathbf{k} \Omega}+\frac{\mathbf{V}_{2}-V_{3}}{1 \mathbf{k} \Omega}=\mathbf{0}
$$

$$
\begin{aligned}
& -2+\frac{\mathrm{V}_{2}}{4}+\mathrm{V}_{2}-3=0 \rightarrow \frac{5}{4} \mathrm{~V}_{2}=5 \rightarrow \mathrm{~V}_{2}=4 \mathrm{~V} \\
& \text { Node } 3 \\
& \\
& \mathrm{~V}_{3}=3 \mathrm{~V}
\end{aligned}
$$

Example - Determine Voltages at circuit nodes

Node 1

By inspection

$$
i_{1 \mathrm{~g}}=-i_{12}=3 \mathrm{~A}
$$

$$
i_{12}=-3 A=\frac{V_{12}}{2 \Omega}=\frac{V_{1}-V_{2}}{2 \Omega}
$$

$$
V_{2}-V_{1}=6
$$

Node $3 i_{3 \mathrm{~g}}=-i_{32}=\frac{V_{3 \mathrm{~g}}}{3 \Omega}=\frac{V_{3}-0}{3 \Omega}$
(8) $\quad i_{3 \mathrm{~g}}=-3 \mathrm{~A}+1 \mathrm{~A}=-2 \mathrm{~A}$

$$
V_{3}=i_{3 \mathrm{~g}} \times 3 \Omega=-2 \times 3=-6 \mathrm{~V}
$$

$\mathrm{V}_{2}=\mathrm{V}_{3}+i_{3 \mathrm{~g}} \times 3 \Omega=-6 \mathrm{~V}-2 \mathrm{~A} \times 3 \Omega=-12 \mathrm{~V}$
$\mathrm{V}_{1}=\mathrm{V}_{2}+i_{12} \times 2 \Omega=-12 \mathrm{~V}-3 \mathrm{~A} \times 2 \Omega=-18 \mathrm{~V}$

Find the labelled current I

Q: Which resistor is in parallel with the voltage source?

All these wires are at the same potential

This problem can be solved very quickly without node voltage analysis

We can rearrange the diagram as

Find the labelled current I

Now there is a second voltage source in this branch. Node voltage analysis is a good approach.

In this example and in the following ones, we are going to specify fixed references for the currents in each of the circuit branches.

As mentioned earlier, this is a good approach for implementation of computer circuit solution using algorithms based on linear algebra.

$$
\begin{aligned}
& 3 \Omega \\
& \square \\
& V_{1} \xlongequal[\sim]{2 \Omega} \underbrace{V_{2}}_{I_{2}=\frac{V_{2}-V_{0}}{6}} \\
& I_{1}=\frac{V_{2}-V_{1}}{2} \\
& \begin{array}{l}
I_{2}=\frac{V_{2}-V_{0}}{6} \\
I=\frac{V_{2}-V_{3}}{3}
\end{array}
\end{aligned}
$$

Ground reference - zero potential

$$
\begin{aligned}
& \text { KCL-node } 2 \\
& I_{1}+I_{2}+I=0
\end{aligned}
$$

Now we should be comfortable with the method, so we can write the currents directly in terms of Amperes, without having to write all the time Ω.
3Ω

By inspection

$$
V_{1}=18 \mathrm{~V}
$$

$$
V_{3}=9 \mathrm{~V}
$$

We only need to solve for $\mathbf{V}_{\mathbf{2}}$.
With the loop method, we would need to write 3 loop equation!

3Ω

$$
\frac{V_{2}-18}{2}+\frac{V_{2}}{6}+\frac{V_{2}-9}{3}=0 \Longleftrightarrow \frac{V_{2}}{2}+\frac{V_{2}}{6}+\frac{V_{2}}{3}=12
$$

$$
\Longleftrightarrow \frac{3 V_{2}}{6}+\frac{V_{2}}{6}+\frac{2 V_{2}}{6}=12
$$

$$
V_{2}=12 \mathrm{~V}
$$

By inspection

$$
V_{1}=18 \mathrm{~V}
$$

$$
V_{3}=9 \mathrm{~V}
$$

$$
I_{1}+I_{2}+I=0
$$

$$
I_{1}=\frac{12-18}{2}=-3 \mathrm{~A}
$$

$$
I_{2}=\frac{12}{6}=2 \mathrm{~A}
$$

Ohm's Law

$$
I=\frac{12-9}{3}=1 \mathrm{~A}
$$

KCL

$$
I=3 \mathrm{~A}-2 \mathrm{~A}=1 \mathrm{~A}
$$

Floating voltage source

Not connected to ground

Find Current I

4 nodes

$$
V_{2}=V_{1}-10
$$

$$
V_{3}=12 \mathrm{~V}
$$

By inspection

$$
V_{2}=V_{1}-10
$$

$$
V_{3}=12 \mathrm{~V}
$$

KCL - node 1

$I_{1}+I_{2}+I=0$
$I_{2} \quad I_{1}=\frac{V_{1}-V_{3}}{2}$
$I_{2}=\frac{V_{1}-V_{0}}{4}$
$I=\frac{V_{2}-V_{0}}{2}$

$$
V_{2}=V_{1}-10
$$

$$
V_{3}=12 \mathrm{~V}
$$

$$
I_{1}=\frac{V_{1}-V_{3}}{2} \quad I_{2}=\frac{V_{1}-V_{0}}{4}
$$

$$
I=\frac{V_{2}-V_{0}}{2}
$$

$\mathrm{KCL}-$ node $1 \quad I_{1}+I_{2}+I=0$

$$
\frac{V_{1}-12}{2}+\frac{V_{1}}{4}+\frac{V_{2}}{2}=0
$$

$$
\begin{aligned}
& -12+\frac{3 V_{1}}{2}+V_{2}=0 \\
& -12+\frac{3 V_{1}}{2}-V_{1}-10=0
\end{aligned}
$$

$$
V_{1}=8.8 \mathrm{~V}
$$

$$
\begin{array}{ll}
V_{2}=V_{1}-10 & V_{3}=12 \mathrm{~V} \\
\begin{array}{ll}
I_{1}=\frac{V_{1}-V_{3}}{2} & V_{1}=8.8 \mathrm{~V} \\
\hline
\end{array} & V_{2}=-\frac{V_{1}-V_{0}}{4} \\
& I=\frac{V_{2}-V_{0}}{2} \\
& I_{1}=\frac{V_{1}-V_{3}}{2}=-\frac{3.2}{2}=-1.6 \mathrm{~A} \\
& I=\frac{V_{2}}{2}=-0.6 \mathrm{~A}
\end{array}
$$

Verify KCL

$$
I=-I_{1}-I_{2} \quad \Longleftrightarrow \quad I=1.6-2.2=-0.6 \mathrm{~A}
$$

$$
\begin{array}{l|l|l|l}
V_{2}=V_{1}-10 & V_{3}=12 \mathrm{~V} & V_{1}=8.8 \mathrm{~V} & V_{2}=-1.2 \mathrm{~V} \\
\hline I_{1}=-1.6 \mathrm{~A} & I_{2}=2.2 \mathrm{~A} & I=-0.6 \mathrm{~A}
\end{array}
$$

Actual currents $\quad 8.8 \mathrm{~V}$

SUMMARY

What if we swap elements about node 2 ?

$$
V_{2}=10 \quad V_{3}=12 \mathrm{~V} \quad V_{1}=8.8 \mathrm{~V} \quad V_{1}-V_{2}=-1.2 \mathrm{~V}
$$

Same result for currents, no need for supernode

$$
\begin{gathered}
I_{1}=-1.6 \mathrm{~A} \\
I_{2}=2.2 \mathrm{~A} \\
I=-0.6 \mathrm{~A}
\end{gathered}
$$

