ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 9

MWF – 12:00pm

Prof. Umberto Ravaioli

2062 ECE Building

Lecture 9 – Summary

Learning Objectives

- 1. Understand equivalent circuits
- 2. Define the Thevenin equivalent for a source
- 3. Define the Norton equivalent for a source
- 4. Obtain the equivalent circuit

Circuit decomposition

Usually, an independent circuit can be decomposed into two sub-circuits, connected at two nodes and identifiable as a "source" and a "load".

Equivalent circuits

To characterize the source sub-circuit, let's connect it to a variable resistor load to record the behavior at the terminals with a measurement.

"source"

Limit cases

$$R'_L = 0$$
 (short circuit)

$$I_{sc} = \frac{V_{eq}}{R_{eq}}$$

$$R_{eq} = \frac{V_{eq}}{I_{sc}}$$

$$R'_L \to \infty$$
 (open circuit)

$$V_{eq} = V_{oc}$$

$$I = I_{sc} - \frac{I_{sc}}{V_{oc}} V = I_{sc} - \frac{1}{R_{eq}} V$$

This equation contains all the information on how the source circuit interacts with other circuits

If the source circuit is known:

we can characterize the behavior of the circuit using KVL and KCL analysis...

... but, as we shall see, this may entail a lot of work!

1 KCL $I_1 = I_2 + I$ KVL $12 = 3k \cdot I_1 + 3k \cdot I_2$ KVL $V = -500 \cdot I + 3k \cdot I_2$ Indeed, it is a lot work to find the terminals equation!

2 Eliminate
$$I_1$$
 from 1st KVL
 $I_1 = I_2 + I$
 $12 = 3k(I_2 + I) + 3k \cdot I_2$
 $12 = 6k \cdot I_2 + 3k \cdot I$

 $6 - 1.5k \cdot I = 3k \cdot I_2$

Rewrite 2^{nd} KVL $V + 500 \cdot I = 3k \cdot I_2$

Eliminate
$$I_2$$
 from the KVL's

$$V + 500 \cdot I = 6 - 1.5k \cdot I$$
$$\frac{(6 - V)}{2k} = I$$

$$I = (-V/2 + 3) [mA]$$

Even for a simple circuit like the one below, the KVL/KCL analysis is cumbersome. Can we simplify?

We can formulate equivalent circuits with a voltage source or with a current source, producing the same terminals equation

Thevenin and Norton Equivalents

Both represent the terminals equation

$$I = I_{sc} - \frac{I_{sc}}{V_{oc}}V = I_{sc} - \frac{1}{R_{eq}}V$$

Thevenin and Norton Equivalents

$$V_{oc} = V_T$$

Thevenin voltage

$$R_{eq} = R_T$$

Thevenin resistance

$$R_T = R_N$$

 $I_{sc} = I_N$ Norton current

$$R_{eq} = R_N$$

Norton resistance

$$I_N = \frac{V_T}{R_T}$$

Thevenin equivalent R_T

 $R_T = R_N$

$$I = I_N - \frac{1}{R_T}V$$

$$V = V_T - R_T I$$

Finding V_T

$$V_{oc} = V_T$$

Determine open circuit voltage with no load

Finding I_N

$$I_{sc} = I_N$$

Determine short circuit current

$$I_N = \frac{V_T}{R_T}$$

Finding R_T

Determine resistance seen at the terminals, after suppressing ideal sources in the circuit (i.e., substitute with the corresponding internal resistance)

Remember:

- ideal voltage source = zero internal resistance (short circuit)
- ideal current source = infinite internal resistance (open circuit)

Example

$$I_1 = I_2$$

Voltage Divider

$$V_1 = V_{oc} = 12V \frac{3k\Omega}{3k\Omega + 3k\Omega} = 6V$$

$$V_T = 6V$$

Example

$$R_{eq} = 500\Omega + 3k\Omega // 3k\Omega$$
$$= 500\Omega + 1.5k\Omega = 2k\Omega$$

Thevenin Equivalent circuit

Verify by calculating short circuit current in detail

$$R_{in} = 3k\Omega + 3k\Omega // 500\Omega = 3k\Omega + 428.6\Omega$$

= 3.4286k\Omega

$$I_1 = 12V/3.4286k\Omega = 3.5mA$$

Verify by calculating short circuit current in detail

$$I_{sc}=I_N=I_1 imes 3\mathrm{k}\Omega\,/(3\mathrm{k}\Omega+500\Omega)=3\mathrm{mA}$$

$$R_{eq}=R_T=V_T/I_{sc}=6\mathrm{V}/3\mathrm{mA}=2\mathrm{k}\Omega$$
 Same as previous result

Since we have calculated the short circuit current, we can formulate the Norton equivalent circuit

Also, from the Thevenin result:

Practice Problem 1 – Find Thevenin equivalent

$$V_T = V_{AB} = IR_2 = V_{in} \frac{R_2}{R_1 + R_2} = \frac{10 \times 2}{4} = 5V$$

$$R_T = R_{\text{eq}} = R_1 //R_2 = 1 \text{k}\Omega$$

Practice Problem 1 – Find Thevenin equivalent

Thevenin equivalent

$$V_T = V_{AB} = IR_2 = V_{in} \frac{R_2}{R_1 + R_2} = \frac{10 \times 2}{4} = 5V$$

$$R_T = R_{\text{eq}} = R_1 //R_2 = 1 \text{k}\Omega$$

Practice Problem 2 – Find Thevenin equivalent

Let's use Node Voltage Analysis

Practice Problem 2 – Find Thevenin equivalent

Node C

$$\frac{V_C}{6} - 2 + \frac{V_C}{6} + \frac{V_C - V_A}{3} = 0 \implies 2V_C - V_A = 6$$

Node A

$$\frac{V_A - V_C}{3} + \frac{V_A - 12}{3} = 0 \qquad \Longrightarrow 2V_A - V_C = 12$$

$$V_C = 8V$$

$$V_A = V_T = 10V$$

Practice Problem 2 – Find Thevenin equivalent

$$R_{eq} = R_T = [(6//6) + 3]//3 = 2\Omega$$

Practice Problem 3 – Find Thevenin equivalent

Loop 1

$$i_1 = 2A$$
 \longrightarrow $V_A = 20\Omega \times 2A = 40V$

Loop 3

$$60V = 15\Omega i_3 + 5\Omega i_3$$
 $i_3 = 3A$
 $V_B = -60 + 15\Omega \times 3A = -15V$ or $V_B = -5\Omega \times 3A = -15V$

$$V_T = V_A - V_B = 40 - (-15) = 55V$$

Practice Problem 3 – Find Thevenin equivalent

$$R_{eq} = R_T = 20\Omega + 15\Omega//5\Omega = 20\Omega + 3.75\Omega$$

