ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 9
MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 9 - Summary

Learning Objectives

1. Understand equivalent circuits
2. Define the Thevenin equivalent for a source
3. Define the Norton equivalent for a source
4. Obtain the equivalent circuit

Circuit decomposition

Usually, an independent circuit can be decomposed into two sub-circuits, connected at two nodes and identifiable as a "source" and a "load".

Equivalent circuits

To characterize the source sub-circuit, let's connect it to a variable resistor load to record the behavior at the terminals with a measurement.

"source"

Limit cases

$$
R_{L}^{\prime}=0 \text { (short circuit) }
$$

$$
I_{S c}=\frac{V_{e q}}{R_{e q}} \quad R_{e q}=\frac{V_{e q}}{I_{S c}}
$$

$$
I=I_{s c}-\frac{I_{s c}}{V_{o c}} V=I_{s c}-\frac{1}{R_{e q}} V
$$

This equation contains all the information on how the source circuit interacts with other circuits

If the source circuit is known:
we can characterize the behavior of the circuit using KVL and KCL analysis...
... but, as we shall see, this may entail a lot of work!

EXAMPLE

(1) KCL $\quad I_{1}=I_{2}+I$

Indeed, it is a lot work to find the terminals equation!

$\mathrm{KVL} \quad 12=3 k \cdot I_{1}+3 k \cdot I_{2}$
KVL $\quad V=-500 \cdot I+3 k \cdot I_{2}$
(2) Eliminate I_{1} from $1^{\text {st }} \mathrm{KVL}$

$$
\begin{aligned}
& I_{1}=I_{2}+I \\
& 12=3 k\left(I_{2}+I\right)+3 k \cdot I_{2} \\
& 12=6 k \cdot I_{2}+3 k \cdot I \\
& 6-1.5 k \cdot I=3 k \cdot I_{2}
\end{aligned}
$$

(3) Rewrite $2^{\text {nd }} \mathrm{KVL}$
$V+500 \cdot I=3 k \cdot I_{2}$
(4)

Eliminate I_{2} from the KVL's $V+500 \cdot I=6-1.5 k \cdot I$

$$
\frac{(6-V)}{2 k}=I
$$

$$
I=(-V / 2+3)[m A]
$$

Even for a simple circuit like the one below, the KVL/KCL analysis is cumbersome. Can we simplify?

We can formulate equivalent circuits with a voltage source or with a current source, producing the same terminals equation

Thevenin and Norton Equivalents

Both represent the terminals equation

$$
I=I_{s c}-\frac{I_{s c}}{V_{o c}} V=I_{S c}-\frac{1}{R_{e q}} V
$$

Thevenin and Norton Equivalents

Thevenin voltage

$$
R_{e q}=R_{T}
$$

Thevenin resistance

NOTE:

$$
R_{T}=R_{N}
$$

Norton current

$$
R_{e q}=R_{N}
$$

Norton resistance

$$
I_{N}=\frac{V_{T}}{R_{T}}
$$

Thevenin equivalent

Norton equivalent

$$
R_{T}=R_{N}
$$

$$
V=V_{T}-R_{T} I
$$

Finding V_{T}

Finding I_{N}

$$
I_{S c}=I_{N}
$$

Determine short circuit current

$$
I_{N}=\frac{V_{T}}{R_{T}}
$$

Finding $\boldsymbol{R}_{\boldsymbol{T}}$

Determine resistance seen at the terminals, after suppressing ideal sources in the circuit (i.e., substitute with the corresponding internal resistance)

Remember:

- ideal voltage source = zero internal resistance (short circuit)
- ideal current source = infinite internal resistance (open circuit)

Example

$$
\begin{aligned}
& I_{1}=I_{2} \quad \text { Voltage Divider } \\
& V_{1}=V_{o c}=12 \mathrm{~V} \frac{3 k \Omega}{3 k \Omega+3 k \Omega}=6 \mathrm{~V} \\
& V_{\boldsymbol{T}}=\mathbf{6 V}
\end{aligned}
$$

Example

$$
\begin{aligned}
R_{e q} & =500 \Omega+3 \mathrm{k} \Omega / / 3 \mathrm{k} \Omega \\
& =500 \Omega+1.5 \mathrm{k} \Omega=2 \mathrm{k} \Omega
\end{aligned}
$$

Thevenin Equivalent circuit

Verify by calculating short circuit current in detail

$$
\begin{aligned}
& R_{\text {in }} \\
& R_{\text {in }}=3 \mathrm{k} \Omega+3 \mathrm{k} \Omega / / 500 \Omega=3 \mathrm{k} \Omega+428.6 \Omega \\
& =3.4286 \mathrm{k} \Omega \\
& I_{1}=12 \mathrm{~V} / 3.4286 \mathrm{k} \Omega=3.5 \mathrm{~mA}
\end{aligned}
$$

Verify by calculating short circuit current in detail

$$
\begin{aligned}
& R_{\text {in }} \\
& I_{S c}=I_{N}=I_{1} \times 3 \mathrm{k} \Omega /(3 \mathrm{k} \Omega+500 \Omega)=3 \mathrm{~mA} \\
& R_{e q}=R_{T}=V_{T} / I_{s c}=6 \mathrm{~V} / 3 \mathrm{~mA}=2 \mathrm{k} \Omega
\end{aligned}
$$

Since we have calculated the short circuit current, we can formulate the Norton equivalent circuit
Also, from the Thevenin result:

Practice Problem 1 - Find Thevenin equivalent

$$
\begin{aligned}
V_{T} & =V_{\mathrm{AB}}=I R_{2}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}=\frac{10 \times 2}{4}=5 \mathrm{~V} \\
R_{T} & =R_{\mathrm{eq}}=R_{1} / / R_{2}=1 \mathrm{k} \Omega
\end{aligned}
$$

Practice Problem 1 - Find Thevenin equivalent

$$
\begin{aligned}
V_{T} & =V_{\mathrm{AB}}=I R_{2}=V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}=\frac{10 \times 2}{4}=5 \mathrm{~V} \\
R_{T} & =R_{\mathrm{eq}}=R_{1} / / R_{2}=1 \mathrm{k} \Omega
\end{aligned}
$$

Practice Problem 2 - Find Thevenin equivalent

Let's use Node Voltage Analysis

Practice Problem 2 - Find Thevenin equivalent

$$
\frac{V_{C}}{6}-2+\frac{V_{C}}{6}+\frac{V_{C}-V_{A}}{3}=0 \Rightarrow 2 V_{C}-V_{A}=6
$$

Node A

$$
\begin{aligned}
& \frac{V_{A}-V_{C}}{3}+\frac{V_{A}-12}{3}=0 \quad \Longrightarrow 2 V_{A}-V_{C}=12 \\
& V_{C}=8 \mathrm{~V} \quad V_{A}=V_{T}=10 \mathrm{~V}
\end{aligned}
$$

Practice Problem 2 - Find Thevenin equivalent 3Ω

$R_{e q}=R_{T}=[(6 / / 6)+3] / / 3=2 \Omega$
2Ω
Thevenin equivalent

Practice Problem 3 - Find Thevenin equivalent

$$
V_{T}=V_{\mathrm{A}}-V_{\mathrm{B}}
$$

Loop 1

$$
i_{1}=2 \mathrm{~A}
$$

$$
V_{A}=20 \Omega \times 2 \mathrm{~A}=40 \mathrm{~V}
$$

Loop 3

$$
\begin{aligned}
& 60 \mathrm{~V}=15 \Omega i_{3}+5 \Omega i_{3} \quad \square \quad i_{3}=3 \mathrm{~A} \\
& V_{B}=-60+15 \Omega \times 3 \mathrm{~A}=-15 \mathrm{~V} \quad \text { or } \quad V_{B}=-5 \Omega \times 3 \mathrm{~A}=-15 \mathrm{~V} \\
& V_{T}=V_{\mathrm{A}}-V_{\mathrm{B}}=40-(-15)=55 \mathrm{~V}
\end{aligned}
$$

Practice Problem 3 - Find Thevenin equivalent

$$
R_{e q}=R_{T}=20 \Omega+15 \Omega / / 5 \Omega=20 \Omega+3.75 \Omega
$$

$R_{T}=23.75 \Omega$

