ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 10
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 10 - Summary

Learning Objectives

1. More practice with equivalent circuits
2. The maximum power transfer theorem

Quiz \#1 on February, 12 to 14

To-date: $\mathbf{3 0}$ students do not have CBTF reservation!
No Class on Monday 2/12/2024
Practice Problems videos (links on Canvas Modules):
Resistor Circuits Review (Week 2 - Lecture 3)
Guided Solution Worksheet 2 (Week 3 - Lecture 6)
Practice Problems on Node method (Week 3 - Lecture 8)
Practice Problems on Equivalent Circuits + WS\#3 (Week 4 - Lecture 9)

Practice Problem 3 - Find Thevenin equivalent

$$
V_{T}=V_{\mathrm{A}}-V_{\mathrm{B}}
$$

Loop 1

$$
i_{1}=2 \mathrm{~A}
$$

$$
V_{A}=20 \Omega \times 2 \mathrm{~A}=40 \mathrm{~V}
$$

Loop 3

$$
\begin{aligned}
& 60 \mathrm{~V}=15 \Omega i_{3}+5 \Omega i_{3} \quad \square \quad i_{3}=3 \mathrm{~A} \\
& V_{B}=-60+15 \Omega \times 3 \mathrm{~A}=-15 \mathrm{~V} \quad \text { or } \quad V_{B}=-5 \Omega \times 3 \mathrm{~A}=-15 \mathrm{~V} \\
& V_{T}=V_{\mathrm{A}}-V_{\mathrm{B}}=40-(-15)=55 \mathrm{~V}
\end{aligned}
$$

Practice Problem 3 - Find Thevenin equivalent

$$
R_{e q}=R_{T}=20 \Omega+15 \Omega / / 5 \Omega=20 \Omega+3.75 \Omega
$$

$R_{T}=23.75 \Omega$

Practice Problem 4 - Repeat \#2 for Norton equivalent

Loop $1 \quad i_{1}=2 \mathrm{~A}$
Loop $23 \Omega i_{2}+3 \Omega\left(i_{2}-i_{3}\right)+12 \mathrm{~V}+3 \Omega\left(i_{2}-2 \mathrm{~A}\right)=0$

$$
\begin{equation*}
\leftrightarrows 9 \Omega i_{2}-3 \Omega i_{3}=-6 \mathrm{~V} \tag{1}
\end{equation*}
$$

Loop $3-12 \mathrm{~V}+3 \Omega\left(i_{3}-i_{2}\right)=0$

$$
\begin{equation*}
\longmapsto-3 \Omega i_{2}+3 \Omega i_{3}=12 \mathrm{~V} \tag{2}
\end{equation*}
$$

Practice Problem 4 - Repeat \#2 for Norton equivalent

$$
\begin{array}{r}
9 \Omega i_{2}-3 \Omega i_{3}=-6 \mathrm{~V} \\
-3 \Omega i_{2}+3 \Omega i_{3}=12 \mathrm{~V} \tag{2}
\end{array}
$$

Solving (1) \& (2)
$i_{2}=1 \mathrm{~A}$

$$
i_{3}=I_{N}=5 \mathrm{~A}
$$

Norton equivalent circuit

Practice Problem 4 - Only using source transformations

Maximum Power Transfer Theorem

We would like to find for what load resistance R_{L} the power P_{L} transferred to R_{L} is maximum.

Remember: Power is $\quad P_{L}=V_{L} I_{L}$

Maximum Power transfer when $\boldsymbol{R}_{\boldsymbol{L}}=\boldsymbol{R}_{\boldsymbol{T}}$ as required by

$$
\frac{d P_{L}}{d R_{L}}=\frac{d}{d R_{L}} R_{L} I_{L}^{2}=V_{T}^{2} \frac{d}{d R_{L}}\left[\frac{R_{L}}{\left(R_{T}+R_{L}\right)^{2}}\right]=0
$$

Proof

$$
\frac{d}{d R_{L}}\left[\frac{R_{L}}{\left(R_{T}+R_{L}\right)^{2}}\right]=0
$$

$$
\begin{gathered}
\qquad f\left(R_{L}\right)=R_{L} \quad g\left(R_{L}\right)=\left(R_{T}+R_{L}\right)^{2} \\
\frac{d}{d R_{L}}\left(\frac{f\left(R_{L}\right)}{g\left(R_{L}\right)}\right)=\frac{f^{\prime}\left(R_{L}\right) g\left(R_{L}\right)-f\left(R_{L}\right) g^{\prime}\left(R_{L}\right)}{g\left(R_{L}\right)^{2}} \\
\frac{d}{d R_{L}}\left[\frac{R_{L}}{\left(R_{T}+R_{L}\right)^{2}}\right]=\frac{\left(R_{T}+R_{L}\right)^{2}-2 R_{L}\left(R_{T}+R_{L}\right)}{\left(R_{T}+R_{L}\right)^{4}}=0 \\
\left(R_{T}+R_{L}\right)^{2}-2 R_{L}\left(R_{T}+R_{L}\right)=0 \\
\left(R_{T}+R_{L}\right)-2 R_{L}=0 \\
\longrightarrow R_{L}=R_{T}
\end{gathered}
$$

Power transferred to load as a function of load resistance

In conditions of maximum power transfer, 50\% of the power generated by the source is dissipated by the source resistance $\boldsymbol{R}_{\boldsymbol{T}}$ and 50\% by the load resistance \boldsymbol{R}_{L}.

