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Lecture 13 – Summary 

Learning Objectives 

1. Practice with transients in RC circuits 
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Quiz #1 – Score distribution 
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Quiz #1 – Statistics 
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RC circuit analysis for constant input voltage  

𝑹 

𝑪 

𝒊𝑪 𝒕  

+ 

_ 
𝑽𝑪(𝒕) 1 𝑽𝒊𝒏 

𝐒𝟏 

𝒕 = 𝟎+ 
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RC circuit analysis for constant input voltage  

𝑹 

𝑪 

𝒊𝑪 𝒕  

+ 

_ 
𝑽𝑪(𝒕) 1 𝑽𝒊𝒏 

𝐒𝟏 

𝒕 = 𝟎+ 

𝑹 𝒊𝑪 𝒕 + 𝑽𝑪 𝒕 − 𝑽𝒊𝒏 = 𝟎 KVL loop 1 
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RC circuit analysis for constant input voltage  

𝑹 

𝑪 

𝒊𝑪 𝒕  

+ 

_ 
𝑽𝑪(𝒕) 1 𝑽𝒊𝒏 

𝐒𝟏 

𝒕 = 𝟎+ 

𝑹 𝒊𝑪 𝒕 + 𝑽𝑪 𝒕 − 𝑽𝒊𝒏 = 𝟎 KVL loop 1 

𝑖𝐶 = 𝐶
𝑑𝑉𝐶(𝑡)

𝑑𝑡
 Since 

𝑹𝑪
𝒅𝑽𝑪(𝒕)

𝒅𝒕
+ 𝑽𝑪 𝒕 − 𝑽𝒊𝒏 = 𝟎 
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First order ordinary differential equation in time, for one energy 
storage element.  𝑵-th order ODE for 𝑵 energy storage elements. 

𝒅𝑽𝑪(𝒕)

𝒅𝒕
+

𝑽𝑪 𝒕 − 𝑽𝒊𝒏

𝑹𝑪
= 𝟎 
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First order ordinary differential equation in time, for one energy 
storage element.  𝑵-th order ODE for 𝑵 energy storage elements. 

𝒅𝑽𝑪(𝒕)

𝒅𝒕
+

𝑽𝑪 𝒕 − 𝑽𝒊𝒏

𝑹𝑪
= 𝟎 

General solution has the form 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐      [𝐕] 
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First order ordinary differential equation in time, for one energy 
storage element.  𝑵-th order ODE for 𝑵 energy storage elements. 

𝒅𝑽𝑪(𝒕)

𝒅𝒕
+

𝑽𝑪 𝒕 − 𝑽𝒊𝒏

𝑹𝑪
= 𝟎 

General solution has the form 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐      [𝐕] 

𝑽𝑪 𝒕 → ∞ = 𝑲𝟐 

𝑽𝑪 𝒕 → 𝟎+ = 𝑲𝟏 +𝑲𝟐 

Constants 𝑲𝟏 and 𝑲𝟐 obtained from initial and final conditions 

and 

𝜶 =
𝟏

𝝉
=

𝟏

𝑹𝒆𝒒𝑪
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Example 1 
𝑹𝟏 

𝑪 
+ 

_ 
𝑽𝑪(𝒕) 𝑽𝒊𝒏 = 𝟒𝐕 

𝒕 = 𝟎+ 

𝑹𝟏 = 𝑹𝟐 = 𝟐𝒌𝛀 

𝑹𝟐 

𝑪 = 𝟎. 𝟐𝟓 𝝁𝑭 

𝑽𝑪 𝒕 = 𝟎− = 𝟔𝐕 
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Example 1 

Switch closes at 𝒕 = 𝟎+ 

𝑹𝟏 

𝑪 
+ 

_ 
𝑽𝑪(𝒕) 𝑽𝒊𝒏 = 𝟒𝐕 

𝒕 = 𝟎+ 

𝑹𝟏 = 𝑹𝟐 = 𝟐𝒌𝛀 

𝑹𝟐 

𝑪 = 𝟎. 𝟐𝟓 𝝁𝑭 

𝑽𝑪 𝒕 = 𝟎− = 𝟔𝐕 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐 
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𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐 

Example 1 
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𝑽𝑪 𝒕 = 𝟎− = 𝑽𝑪 𝒕 = 𝟎+ = 𝟔𝐕 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐 

1 Step Find constants 𝑲𝟏 and 𝑲𝟐 

𝑽𝑪 𝒕 = 𝟎+ = 𝟔𝐕 = 𝑲𝟏 +𝑲𝟐 

Example 1 
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(No current flows) 

𝑽𝑪 𝒕 = 𝟎− = 𝑽𝑪 𝒕 = 𝟎+ = 𝟔𝐕 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐 

1 Step Find constants 𝑲𝟏 and 𝑲𝟐 

𝑽𝑪 𝒕 = 𝟎+ = 𝟔𝐕 = 𝑲𝟏 +𝑲𝟐 

𝑽𝑪 𝒕 → ∞ = 𝑽𝒊𝒏 = 𝑲𝟐 = 𝟒𝐕 

𝑲𝟏 = 𝟐𝐕 

𝑲𝟐 = 𝟒𝐕 

Example 1 
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𝑹𝟏 𝑹𝟐 

𝑹𝒆𝒒 

𝑹𝒆𝒒 = 𝑹𝟏 + 𝑹𝟐 = 𝟒 𝐤𝛀 

2 Step Compute 𝜶 

𝝉 = 𝑹𝒆𝒒𝑪 = 𝟒 𝐤𝛀 × 𝟎. 𝟐𝟓 𝛍𝐅 = 𝟏𝟎−𝟑 𝐬 

𝜶 =
𝟏

𝝉
= 𝟏𝟎𝟑 𝐬−𝟏 

Example 1 
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𝑹𝟏 𝑹𝟐 

𝑹𝒆𝒒 

𝑹𝒆𝒒 = 𝑹𝟏 + 𝑹𝟐 = 𝟒 𝐤𝛀 

2 Step Compute 𝜶 

𝝉 = 𝑹𝒆𝒒𝑪 = 𝟒 𝐤𝛀 × 𝟎. 𝟐𝟓 𝛍𝐅 = 𝟏𝟎−𝟑 𝐬 

𝜶 =
𝟏

𝝉
= 𝟏𝟎𝟑 𝐬−𝟏 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 +𝑲𝟐 = 𝟐 𝒆−𝟏𝟎

𝟑𝒕 + 𝟒  [𝐕] 

3 Step Time-dependent voltage solution 

Example 1 
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𝑽𝑪 𝒕 = 𝟐 𝒆−𝟏𝟎
𝟑𝒕 + 𝟒  [𝐕] 

Time-dependent voltage solution Example 1 

[ ms ] 

[ V ] 

𝑽𝑪 𝒕  

𝒕 
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𝑽𝑪 𝒕 = 𝟐 𝒆−𝟏𝟎
𝟑𝒕 + 𝟒  [𝐕] 

Time-dependent voltage solution Example 1 

[ ms ] 

[ V ] 

1 2 3 4 

≈ 63% 

≈ 37% 

𝑽𝑪 𝒕  

𝒕 

𝟐𝐕 

𝟎. 𝟕𝟑𝟔𝐕 

𝟏. 𝟐𝟔𝟒𝐕 

Let’s magnify the graph 

𝑒−1 = 0.36787944… 
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𝑽𝑪 𝒕 = 𝟐 𝒆−𝟏𝟎
𝟑𝒕 + 𝟒  [𝐕] 

Time-dependent voltage solution Example 1 

[ ms ] 

[ V ] 

1 2 3 4 

≈ 63% 

≈ 37% 

𝑽𝑪 𝒕  

𝒕 

𝟐𝐕 

𝟎. 𝟕𝟑𝟔𝐕 

𝟏. 𝟐𝟔𝟒𝐕 

Let’s magnify the graph 

𝑒−1 = 0.36787944… 

Same integral 
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𝒊𝑪 𝒕 = 𝑪
𝒅𝑽(𝒕)

𝒅𝒕
= 𝑪

𝒅

𝒅𝒕
𝟐 𝒆−𝟏𝟎

𝟑𝒕 + 𝟒  𝐀  
 

= 𝟎. 𝟐𝟓 × 𝟏𝟎−𝟔 × −𝟐 × 𝟏𝟎𝟑 × 𝒆−𝟏𝟎
𝟑𝒕  [𝐀] 

= −𝟎. 𝟓 𝒆−𝟏𝟎
𝟑𝒕 [𝐦𝐀] 

Time-dependent current solution Example 1 

[ mA ] 

[ ms ] 

𝒊𝑪 𝒕  

𝒕 
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Example 2 Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝒕 = 𝟎− 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 
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Example 2 Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝒕 = 𝟎− 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝑽𝑪 𝒕 = 𝟎− = 𝟏𝟎𝐕 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

1 Step Find state of capacitor at 𝒕 = 𝟎− 

Assuming that the capacitor is at steady-state before 
moving the switch, it behaves like an open circuit, and  
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Example 2 

+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝒕 = 𝟎− 

𝑹𝟏 = 𝟏 𝐤𝛀 

At 𝒕 = 𝟎− the capacitor is fully 
charged and at steady state. 
 
The capacitor behaves like an 
open circuit: 

𝒊𝑪(𝒕) 

𝒊𝑪 𝒕 = 𝟎− = 𝟎 𝐀 
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Example 2 

+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝒕 = 𝟎− 

−𝑽𝑪 𝟎− + 𝑹𝟏𝒊𝑪 𝟎− + 𝟏𝟎𝐕 = 𝟎 

𝑹𝟏 = 𝟏 𝐤𝛀 

Apply the KVL 

At 𝒕 = 𝟎− the capacitor is fully 
charged and at steady state. 
 
The capacitor behaves like an 
open circuit: 

𝒊𝑪(𝒕) 

𝒊𝑪 𝒕 = 𝟎− = 𝟎 𝐀 

𝑽𝑪 𝟎− = 𝟏𝟎𝐕 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 
𝒕 = 𝟎+ 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

Example 2 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 
𝒕 = 𝟎+ 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝑽𝑪 𝒕 → ∞ = 𝟎𝐕   →     𝑲𝟐 = 𝟎 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

3 Step Find state of capacitor at 𝒕 → ∞ 

There is no source in left circuit.  At steady-state the 
capacitor must be discharged: 

Example 2 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 
𝒕 = 𝟎+ 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝑽𝑪 𝒕 → ∞ = 𝟎𝐕   →     𝑲𝟐 = 𝟎 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

3 Step Find state of capacitor at 𝒕 → ∞ 

There is no source in left circuit.  At steady-state the 
capacitor must be discharged: 

Example 2 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝒊𝑪 𝒕 = 𝟎+ = −𝟏𝟎 𝟏𝐤 = −𝟏𝟎𝐦𝐀  

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

4 Step Find the current flowing out of the capacitor at 𝒕 = 𝟎+ 

The capacitor starts discharging, behaving like a time 
dependent source.  At 𝒕 = 𝟎+ it is at 𝟏𝟎𝐕 and it sees 
𝐑𝒆𝒒 = 𝑹𝟐//𝑹𝟑 = 𝟏𝐤𝛀, therefore:  

𝒊𝑪(𝒕) 

Example 2 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝒊𝑪(𝒕) 

Example 2 

𝑹𝟐//𝑹𝟑  𝒊𝑪 𝟎+ + 𝑽𝑪 𝟎+ = 𝟎 

Apply the KVL at  𝒕 = 𝟎+ 

𝒊𝑪 𝟎+ = −𝑽𝑪 𝟎+ 𝑹𝟐//𝑹𝟑  

𝒊𝑪 𝒕 = 𝟎+ = −𝟏𝟎𝐦𝐀 

𝑹𝟐//𝑹𝟑 = 𝟏 𝐤𝛀 

𝑽𝑪 𝒕 = 𝟎+ = 𝟏𝟎𝐕 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝝉 = 𝑹𝒆𝒒𝑪 = 𝟏𝐤𝛀 × 𝟏𝛍𝐅 = 𝟏𝟎−𝟑𝒔             𝜶 = 𝟏𝟎𝟑𝐬−𝟏 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

5 Step Find 𝝉 and 𝜶 

𝒊𝑪(𝒕) 

Example 2 

𝑹𝒆𝒒 = 𝑹𝟐//𝑹𝟑 = 𝟏 𝐤𝛀 
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Switch moves to left terminal at 𝒕 = 𝟎+ 

𝑹𝟑 

𝑪 
+ 
_ 𝑽𝑪(𝒕) 

𝟏𝟎𝐕 

𝑹𝟐 = 𝑹𝟑 = 𝟐 𝐤𝛀 

𝑹𝟐 

𝑪 = 𝟏 𝛍𝐅 

𝝉 = 𝑹𝒆𝒒𝑪 = 𝟏𝐤𝛀 × 𝟏𝛍𝐅 = 𝟏𝟎−𝟑𝒔             𝜶 = 𝟏𝟎𝟑𝐬−𝟏 

𝑹𝟏 = 𝟏 𝐤𝛀 

𝑹𝟏 

5 Step Find 𝝉 and 𝜶 

𝒊𝑪(𝒕) 

𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 = 𝟏𝟎 𝒆−𝟏𝟎

𝟑𝒕  [𝐕] 

6 Step Time-dependent voltage 

Example 2 

𝑹𝒆𝒒 = 𝑹𝟐//𝑹𝟑 = 𝟏 𝐤𝛀 
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𝑽𝑪 𝒕 = 𝑲𝟏𝒆
−𝜶𝒕 = 𝟏𝟎 𝒆−𝟏𝟎

𝟑𝒕  [𝐕] 

Time-dependent voltage Example 2 

[ ms ] 

[ V ] 

𝑽𝑪 𝒕  

𝒕 
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Time-dependent current Example 2 

𝒊𝑪 𝒕 = 𝑪
𝒅𝑽(𝒕)

𝒅𝒕
= 𝑪

𝒅

𝒅𝒕
𝟏𝟎 𝒆−𝟏𝟎

𝟑𝒕  𝐀  
 

= 𝟏𝟎−𝟔 × −𝟏𝟎 × 𝟏𝟎𝟑 × 𝒆−𝟏𝟎
𝟑𝒕  [𝐀] 

 

= −𝟏𝟎 𝒆−𝟏𝟎
𝟑𝒕 [𝐦𝐀] 
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Time-dependent current Example 2 

[ ms ] 

[ mA ] 

𝒊𝑪 𝒕 = −𝟏𝟎 𝒆−𝟏𝟎
𝟑𝒕 [𝐦𝐀] 

𝒊𝑪 𝒕  

𝒕 
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Example 3 Switch opens at 𝒕 = 𝟎+ 

+ 
_ 𝑽𝒙(𝒕) 

𝟐𝐀 

𝒕 = 𝟎+ 

𝟏𝛀 𝟐𝛀 

𝟏𝛀 

𝟏𝛀 

𝒊𝒚 

𝒊𝒙 

1 Find 𝒊𝒚 𝟎−  

2 𝑽𝒙 𝟎−  

3 𝒊𝒚 𝟎+  

4 𝑽𝒙 𝟎+  

5 𝑽𝒙 ∞  
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Example 3 

+ 
_ 𝑽𝒙 

𝟐𝐀 

𝒕 = 𝟎− 

𝑽𝒙 𝟎− = 𝒊𝒚 × 𝟏𝛀 = 𝟏𝐕 

𝟏𝛀 

At 𝒕 = 𝟎− the capacitor is an open circuit and 𝒊𝒙 𝟎− = 𝟎. 

𝟐𝛀 

𝟏𝛀 

𝟏𝛀 

𝒊𝒚 

𝒊𝒙 

1 Find 𝒊𝒚 𝟎−  2 𝑽𝒙 𝟎−  

𝒊𝒚 𝟎− = 𝟐𝐀
𝟐𝛀

𝟐𝛀 + 𝟐𝛀
= 𝟏𝐀 

𝑽𝒙(𝟎
−) 

Current Divider 
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Example 3 

+ 
_ 𝑽𝒙 

𝟒𝐕 

𝒕 = 𝟎− 

𝑽𝒙 𝟎− = 𝟒 ×
𝟏𝛀

𝟒𝛀
= 𝟏𝐕 

𝟏𝛀 

𝟐𝛀 𝟏𝛀 

𝟏𝛀 

𝒊𝒚 

𝒊𝒙 

1 Find 𝒊𝒚 𝟎−  2 𝑽𝒙 𝟎−  

𝒊 = 𝒊𝒚 𝟎− =
𝟒𝐕

𝟐𝛀 + 𝟏𝛀 + 𝟏𝛀
= 𝟏𝐀 

𝑽𝒙(𝟎
−) 

For practice, let’s do the same with source transformation. 

𝒊 = 𝒊𝒙 + 𝒊𝒚 

𝒊𝒙 𝟎− = 𝟎 

Voltage Divider 
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Example 3 Switch opens at 𝒕 = 𝟎+ 

+ 
_ 𝑽𝒙(𝟎

+) 

𝟐𝐀 

𝒕 = 𝟎+ 

𝟏𝛀 𝟐𝛀 

𝟏𝛀 

𝟏𝛀 

𝒊𝒚 

𝒊𝒙 

Find 3 𝒊𝒚 𝟎+  4 𝑽𝒙 𝟎+  

𝑽𝒙 𝟎− = 𝑽𝒙 𝟎+ = 𝟏𝐕 

𝒊𝒚 𝟎+ = 𝟎 since the switch is open 

voltage does not change 
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Example 3 Switch opens at 𝒕 = 𝟎+ 

+ 
_ 𝑽𝒙(∞) 

𝟐𝐀 

𝒕 = 𝟎+ 

𝟏𝛀 𝟐𝛀 

𝟏𝛀 

𝟏𝛀 

𝒊𝒚 

𝒊𝒙 

Find 

𝑽𝒙 ∞ = 𝟐𝐀 × 𝟐𝛀 = 𝟒𝐕 

𝒊𝒙 ∞ = 𝟎 Capacitor is an open at  𝒕 → ∞ 

Capacitor has the same voltage as at the terminals of the  
𝟐𝛀 resistor through which flows the only current 𝒊 = 𝟐𝐀  

5 𝑽𝒙 ∞  

𝒊 

𝑽𝒙(∞) 
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Magnetic Inductance 

Current flowing in electric wires generates a magnetic 
field.  When a change in current occurs, an 
“electromotive force” (voltage) is generated as a 
reaction, due to the change of the magnetic flux 
concatenated with the wire.  The structure is said to 
“store” magnetic energy. 
 
Inductance (quantified as the ratio between the 
magnetic field flux and the current)  expresses the 
tendency of a conductor to oppose a change of the 
current flowing through it. 
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Inductors 
All conductors carrying current exhibit inductance.  
The devices called inductors are designed to 
maximize the concatenated magnetic field and the 
associated storage of magnetic energy. 

A coiled wire structure is  
called a “solenoid” and it 
is the most common way 
to realize an inductor. 
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Inductance 
The inductance value of a solenoid inductor depends 
on the number of wire loops in the coil, on the cross-
sectional area, and on the “magnetic permeability” 
of the core region.  Rods of high relative permeability 
material are often inserted in solenoids to amplify 
the local magnetic field and increase the inductance 
value of the device. 

𝐿 = 𝑁2𝜇𝑟  𝜇0 𝐴 ℓ 

inductance 

loops per unit length  

Relative permeability 
vacuum permeability 

area 
total length 
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Inductance 

𝐿 = 𝑁2𝜇𝑟  𝜇0 𝐴 ℓ 
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Circuit symbol of an inductor 

+ _ 

A B 
𝑖𝐿(𝑡) 

Relationship between current and voltage 

𝑉𝐿 = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
 

𝑉𝐿(𝑡) 

The unit of inductance is the henry with symbol [H] 


