ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 16
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 16 - Summary

Learning Objectives

1. Power considerations
2. Detailed analysis of RC and RL circuits with time-dependent sources
3. Solution of circuit differential equations

Power Considerations

1. Energy stored by a capacitor
2. Energy stored by an inductor

Capacitor

$$
t=0^{+}
$$

$$
\alpha=\frac{1}{\tau}=\frac{1}{R C}
$$

$$
C=\frac{\boldsymbol{\tau}}{\boldsymbol{R}}
$$

At $t \rightarrow \infty$ the resistor has dissipated all the energy stored in the capacitor
Power $\quad p_{R}(t)=v_{C}(t) \cdot i_{R}(t)=\frac{v_{c}^{2}(t)}{R}=\frac{V_{0}^{2} e^{-2 \alpha t}}{R}$
Energy absorbed

$$
\begin{aligned}
& w_{R}(t)=\int_{0}^{t} p_{R}\left(t^{\prime}\right) d t^{\prime}=\int_{0}^{t} \frac{V_{0}^{2} e^{-2 \alpha t^{\prime}}}{R} d t^{\prime} \\
& \quad=-\left.\frac{\tau V_{0}^{2}}{2 R} e^{-2 \alpha t}\right|_{0} ^{t}=\frac{1}{2} C V_{0}^{2}\left[1-e^{-2 \alpha t}\right]
\end{aligned}
$$

Energy absorbed

$$
w_{R}(t)=\frac{1}{2} C V_{0}^{2}\left[1-e^{-2 \alpha t}\right]
$$

$t \rightarrow \infty$

$$
w_{R}(t \rightarrow \infty)=\frac{1}{2} C V_{0}^{2}
$$

Energy dissipated by $\boldsymbol{R}=$ Energy stored by C

Inductor

$$
\alpha=\frac{1}{\tau}=\frac{R}{L}
$$

$$
L=\tau R
$$

At $\boldsymbol{t} \rightarrow \infty$ the resistor has dissipated all the energy stored in the inductor
Power $p_{R}(t)=v_{R}(t) \cdot i_{R}(t)=i_{L}^{2}(t) R=R I_{0}^{2} e^{-2 \alpha t}$
$\underset{\text { absorbed }}{\text { Energy }} w_{R}(t)=\int_{0}^{t} p_{R}\left(t^{\prime}\right) d t^{\prime}=\int_{0}^{t} R I_{0}^{2} e^{-2 \alpha t^{\prime}} d t^{\prime}$

$$
=-\left.\frac{\tau R \mathbf{I}_{0}^{2}}{2} e^{-2 \alpha t}\right|_{0} ^{t}=\frac{1}{2} L \mathbf{I}_{0}^{2}\left[1-e^{-2 \alpha t}\right]_{6}
$$

Energy dissipated by $\boldsymbol{R}=$ Energy stored by L

RC and RL circuits with time-dependent input

RC circuit

$$
\begin{aligned}
& -v_{S}(t)+R i_{C}(t)+v_{C}(t)=0 \\
& R C \frac{d}{d t} v_{C}(t)+v_{C}(t)=v_{S}(t)
\end{aligned}
$$

RC circuit

The RC circuit is described by the differential equation

$$
\frac{d}{d t} v_{C}(t)+\frac{1}{R C} v_{C}(t)=\frac{1}{R C} v_{S}(t)
$$

RL circuit

Time-dependent

$$
\begin{aligned}
& v_{L}(t)-R\left[i_{S}(t)-i_{L}(t)\right]=0 \\
& L \frac{d}{d t} i_{L}(t)+R i_{L}(t)=R i_{S}(t)
\end{aligned}
$$

RL circuit

The RL circuit is described by the differential equation

$$
\frac{d}{d t} i_{L}(t)+\frac{R}{L} i_{L}(t)=\frac{R}{L} i_{S}(t)
$$

The transient behavior for RC and RL circuits is described by the first order ordinary differential equation

A solution satisfies the initial condition

$$
y\left(0^{-}\right)=y\left(0^{+}\right)
$$

CASE $1-\mathrm{RC}$ circuit with constant $v_{S}(t)=V_{S}$

$$
\frac{d}{d t} V_{C}(t)+\frac{1}{R C} V_{C}(t)=\frac{1}{R C} V_{S}
$$

Initial

$$
V_{C}\left(0^{-}\right)=V_{C}\left(0^{+}\right)
$$

The solution can be written in the form

$$
V_{C}(t)=u_{h}(t)+\underset{\text { constant }}{K_{2}}
$$

In our case, we have:

$$
\begin{gathered}
V_{C}(t)=V_{h}(t)+V_{S} \\
\frac{d}{d t}\left[V_{h}+V_{S}\right]+\frac{1}{R C}\left[V_{h}+/_{S}\right]=\frac{1}{R C} V_{S} \\
\downarrow \\
\frac{d}{d t} V_{h}(t)+\frac{1}{R C} V_{h}(t)=0
\end{gathered}
$$

Equation 2 is homogeneous and can be integrated as

$$
V_{h}(t)=K_{1} e^{-t / R C}
$$

Complete solution

$$
V_{c}(t)=V_{h}(t)+K_{2}=K_{1} e^{-t / R C}+K_{2}
$$

Equation 2 is homogeneous and can be integrated as

$$
V_{h}(t)=K_{1} e^{-t / R C}
$$

Complete solution

$$
\begin{aligned}
& V_{c}(t)=V_{h}(t)+K_{2}=K_{1} e^{-t / R C}+K_{2} \\
& \begin{array}{l}
V_{C}\left(0^{-}\right)=V_{C}\left(0^{+}\right) \rightarrow V_{C}\left(0^{-}\right)=K_{1}+K_{2} \\
\longrightarrow \\
\\
\text { Also, } K_{1}=V_{C}\left(0^{-}\right)-K_{2} \\
\hline(t \rightarrow)=K_{2}=V_{S}
\end{array}
\end{aligned}
$$

Equation 2 is homogeneous and can be integrated as

$$
V_{h}(t)=K_{1} e^{-t / R C}
$$

Complete solution

$$
\begin{gathered}
V_{c}(t)=V_{h}(t)+K_{2}=K_{1} e^{-t / R C}+K_{2} \\
V_{C}\left(0^{-}\right)=V_{C}\left(0^{+}\right) \rightarrow V_{C}\left(0^{-}\right)=K_{1}+K_{2}
\end{gathered}
$$

$$
\longrightarrow K_{1}=V_{C}\left(0^{-}\right)-K_{2}
$$

$$
\text { Also, } V_{C}(t \rightarrow \infty)=K_{2}=V_{S}
$$

$$
V_{c}(t)=\left[V_{C}\left(0^{-}\right)-V_{S}\right] e^{-t / R C}+V_{S}
$$

CASE 2 - RL circuit with constant $\boldsymbol{i}_{S}(t)=I_{S}$

Following the same solution steps
$i_{L}(t)=\left[I_{L}\left(0^{-}\right)-I_{S}\right] e^{-(L / R) t}+I_{S}$

CASE 3 - RC or RL circuit with arbitrary input

Differential equation of the type

$$
\frac{d}{d t} y(t)+a y(t)=b f(t)
$$

General solution

$$
\begin{aligned}
& y(t)=y_{h}(t)+y_{p}(t) \quad t \geq 0 \\
& \begin{array}{c}
\text { solution of the } \\
\text { homogeneous equation } \\
\frac{d}{d t} y(t)+a y(t)=0
\end{array}
\end{aligned}
$$

Solution to the homogeneous equation has the form

$$
y_{h}(t)=K_{1} e^{-\alpha t}
$$

so, the general solution is

$$
y_{h}(t)=\underbrace{K_{1} e^{-\alpha t}}_{\begin{array}{c}
\text { Homogeneous } \\
\text { solution }
\end{array}}+\underbrace{y_{p}(t)}_{\begin{array}{c}
\text { Particular } \\
\text { solution }
\end{array}}
$$

The particular solution depends on the form of the forcing term $\boldsymbol{f}(\boldsymbol{t})$ (the source).

Examples of particular solutions to

$$
\frac{d}{d t} y(t)+a y(t)=b f(t)
$$

function $f(t)$
Particular solution $y_{p}(t)$

1	constant D	constant K
2	$D \times t$	$K t+L$ for some K and L

${ }^{*} A$ and θ depend on ω, a, and b

Example

ros inplicity $R C=1 \mathrm{~s}$
$v_{S}(t)=\cos (t)$
$v_{C}\left(t=0^{-}\right)=0 \mathrm{~V}$
zero initial condition
(the capacitor is not charged at time $t=0^{-}$)

Example

$$
\begin{array}{l|l}
\text { For simplicity } & \boldsymbol{R} \boldsymbol{C}=\mathbf{1 s}
\end{array} \begin{aligned}
& v_{S}(\boldsymbol{t})=\boldsymbol{\operatorname { c o s }}(\boldsymbol{t}) \\
& \\
& v_{C}\left(t=0^{-}\right)=0 \mathrm{~V}
\end{aligned}
$$

Differential equation:

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

Example

$$
\begin{array}{c|l}
\text { For simplicity } & \boldsymbol{R C}=\mathbf{1 s}
\end{array} \begin{aligned}
& v_{S}(\boldsymbol{t})=\cos (\boldsymbol{t}) \\
& v_{C}\left(t=0^{-}\right)=0 \mathrm{~V}
\end{aligned}
$$

Differential equation:

$$
\text { rental equation: } \frac{1}{R C}=1\left[\mathrm{~s}^{-1}\right]
$$

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\stackrel{\downarrow}{\cos (t)}
$$

$$
\omega=2 \pi f=1
$$

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

From the table of particular solutions

$$
\begin{gathered}
V_{p}(t)=A \cos (\mathrm{t}+\theta) \\
=\underbrace{A \cos (\theta)}_{\boldsymbol{B}} \cos (t)-\underbrace{A \sin (\theta)}_{C} \sin (t)
\end{gathered}
$$

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

From the table of particular solutions

$$
\begin{gathered}
V_{p}(t)=A \cos (\mathrm{t}+\theta) \\
=\underbrace{A \cos (\theta)}_{B} \cos (t)-\underbrace{A \sin (\theta)}_{C} \sin (t) \\
V_{p}(t)=B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t)=-B \sin (t)-C \cos (t)
\end{gathered}
$$

Substituting the particular solution and its derivative

$$
\begin{aligned}
V_{p}(t) & =B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t) & =-B \sin (t)-C \cos (t)
\end{aligned}
$$

in the original differential equation

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

Substituting the particular solution and its derivative

$$
\begin{aligned}
V_{p}(t) & =B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t) & =-B \sin (t)-C \cos (t)
\end{aligned}
$$

in the original differential equation

$$
\leadsto \frac{d}{d t} V_{p}(t)+V_{p}(t)=\cos (t)
$$

Substituting the particular solution and its derivative

$$
\begin{aligned}
V_{p}(t) & =B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t) & =-B \sin (t)-C \cos (t)
\end{aligned}
$$

in the original differential equation

$$
\begin{gathered}
\frac{d}{d t} V_{p}(t)+V_{p}(t)=\cos (t) \\
-B \sin (t)-C \cos (t) \\
+B \cos (t)-C \sin (t)=\cos (t)
\end{gathered}
$$

Substituting the particular solution and its derivative

$$
\begin{aligned}
V_{p}(t) & =B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t) & =-B \sin (t)-C \cos (t)
\end{aligned}
$$

in the original differential equation

$$
\begin{gathered}
\frac{d}{d t} V_{p}(t)+V_{p}(t)=\cos (t) \\
-B \sin (t)-C \cos (t) \\
+B \cos (t)-C \sin (t)=\cos (t)
\end{gathered}
$$

$$
(B-C) \cos (t)-(B+C) \sin (t)=\cos (t)
$$

$$
(B-C)=1 \quad(B+C)=0
$$

$$
(B-C)=1 \quad(B+C)=0
$$

$$
B=\frac{1}{2}=A \cos \theta \quad C=-\frac{1}{2}=A \sin (\theta)
$$

$$
(B-C)=1 \quad(B+C)=0
$$

$$
B=\frac{1}{2}=A \cos \theta \quad C=-\frac{1}{2}=A \sin (\theta)
$$

From the ratio C / B

$$
\frac{C}{B}=\frac{A \sin (\theta)}{A \cos (\theta)}=\tan (\theta)=-1
$$

we obtain readily that

$$
\theta=-\frac{\pi}{4}
$$

$B=A \cos \theta=\frac{1}{2} \quad C=A \sin (\theta)=-\frac{1}{2}$

$B=A \cos \theta=\frac{1}{2} \quad C=A \sin (\theta)=-\frac{1}{2}$

$$
A=\frac{1}{2 \cos \theta}=\frac{1}{2 \cos \left(-\frac{\pi}{4}\right)}=\frac{1}{2 \frac{\sqrt{2}}{2}}=\frac{1}{\sqrt{2}}
$$

$$
B=A \cos \theta=\frac{1}{2} \quad C=A \sin (\theta)=-\frac{1}{2}
$$

$$
\begin{aligned}
& A=\frac{1}{2 \cos \theta}=\frac{1}{2 \cos \left(-\frac{\pi}{4}\right)}=\frac{1}{2 \frac{\sqrt{2}}{2}}=\frac{1}{\sqrt{2}} \\
& A=\frac{-1}{2 \sin \theta}=\frac{-1}{2 \sin \left(-\frac{\pi}{4}\right)}=\frac{-1}{2 \frac{-\sqrt{2}}{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
B=A \cos \theta=\frac{1}{2} \quad C=A \sin (\theta)=-\frac{1}{2}
$$

$$
\begin{aligned}
& A=\frac{1}{2 \cos \theta}=\frac{1}{2 \cos \left(-\frac{\pi}{4}\right)}=\frac{1}{2 \frac{\sqrt{2}}{2}}=\frac{1}{\sqrt{2}} \\
& A=\frac{-1}{2 \sin \theta}=\frac{-1}{2 \sin \left(-\frac{\pi}{4}\right)}=\frac{-1}{2 \frac{-\sqrt{2}}{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
A=\frac{1}{\sqrt{2}}
$$

From these results, the particular solution is

$$
V_{p}(t)=A \cos (t+\theta)=\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

and the complete solution is

$$
V_{C}(t)=K_{1} e^{-t}+\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

From these results, the particular solution is

$$
V_{p}(t)=A \cos (t+\theta)=\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

and the complete solution is

$$
V_{C}(t)=K_{1} e^{-t}+\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

At $\boldsymbol{t}=\mathbf{0}^{+}$
$0=K_{1}+\frac{1}{\sqrt{2}} \cos \left(-\frac{\pi}{4}\right)=K_{1}+\frac{1}{2} \leadsto K_{1}=-\frac{1}{2}$
Finally:

$$
V_{C}(t)=-\frac{e^{-t}}{2}+\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

In many practical situations the transients are very short. We are interested in describing steady-state system response with a more immediate mathematical approach for a specified frequency of operation. This will be accomplished next by introducing the phasor formalism.

Name:

UIN:

1. Using KCL and the $v-i$ relations for resistors and capacitors, show that the voltage $v(t)$ in the following circuit satisfies the following ODE if $\boldsymbol{R}=\mathbf{5 \Omega}$ and $\boldsymbol{C}=\mathbf{2 F}$. Also find the capacitor voltage $\mathrm{v}(\mathrm{t})$ if $\boldsymbol{i}_{\boldsymbol{s}}(t)=\boldsymbol{\operatorname { c o s }}(t)$. Assume zero initial conditions.

$$
2 \frac{d v}{d t}+\frac{1}{5} v(t)=i_{s}(t) \text { for } t>0
$$

Hints: Write the KCL at node 1 to verify the given differential equation Rewrite the equation in the form $\frac{d}{d t} v(t)+a v(t)=b f(t)$ and follow the procedure we outlined today to find $v(t)$

