ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 17
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 17 - Summary

Learning Objectives

1. Review of Complex Numbers
2. Complex number representations
3. Operations with complex numbers

Upcoming Quiz 2

Four Problems

1. Two problems on Circuits with Dependent Sources
2. Two problems on Transient in RC and RL circuits

Help sheet available at the exam as in Practice Quiz 2

Example from previous lecture

For simplicity \begin{tabular}{lll}

$\boldsymbol{R} \boldsymbol{C}=\mathbf{1 s}$ \& | $v_{S}(\boldsymbol{t})=\cos (\boldsymbol{t})$ |
| :--- |
| $v_{C}\left(t=0^{-}\right)=0 \mathrm{~V}$ |

\end{tabular}

Differential equation:

$$
\frac{1}{R C}=1\left[\mathrm{~s}^{-1}\right]
$$

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

$$
\omega=2 \pi f=1
$$

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

From the table of particular solutions

$$
\begin{gathered}
V_{p}(t)=A \cos (\mathrm{t}+\theta) \\
=\underbrace{A \cos (\theta)}_{B} \cos (t)-\underbrace{A \sin (\theta)}_{C} \sin (t) \\
V_{p}(t)=B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t)=-B \sin (t)-C \cos (t) .
\end{gathered}
$$

Substituting the particular solution and its derivative

$$
\begin{aligned}
V_{p}(t) & =B \cos (t)-C \sin (t) \\
\frac{d}{d t} V_{p}(t) & =-B \sin (t)-C \cos (t)
\end{aligned}
$$

in the original differential equation

$$
\frac{d}{d t} v_{C}(t)+v_{C}(t)=\cos (t)
$$

$$
-B \sin (t)-C \cos (t)
$$

$$
+B \cos (t)-C \sin (t)=\cos (t)
$$

$(B-C) \cos (t)-(B+C) \sin (t)=\cos (t)$

$$
(B-C)=1 \quad(B+C)=0
$$

$$
(B-C)=1 \quad(B+C)=0
$$

$$
B=A \cos \theta=\frac{1}{2} \quad C=A \sin (\theta)=-\frac{1}{2}
$$

From the ratio C / B

$$
\frac{C}{B}=\frac{A \sin (\theta)}{A \cos (\theta)}=\tan (\theta)=-1
$$

we obtain readily that

From above:

$$
A=\frac{1}{2 \cos \theta}=\frac{1}{2 \cos \left(-\frac{\pi}{4}\right)}=\frac{1}{\sqrt{2}}
$$

From these results, the particular solution is

$$
V_{p}(t)=A \cos (t+\theta)=\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

and the complete solution is

$$
V_{C}(t)=K_{1} e^{-t}+\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

At $\boldsymbol{t}=\mathbf{0}^{+}$
$0=K_{1}+\frac{1}{\sqrt{2}} \cos \left(-\frac{\pi}{4}\right)=K_{1}+\frac{1}{2} \leadsto K_{1}=-\frac{1}{2}$
Finally:

$$
V_{C}(t)=-\frac{e^{-t}}{2}+\frac{1}{\sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

Transient $\leftarrow \mid \longrightarrow \approx$ Steady-state

In many practical situations the transients are very short. We are interested in describing steady-state system response with a more immediate mathematical approach for a specified frequency of operation. This will be accomplished next by introducing the phasor formalism.

Brief review of numbers

1) Natural numbers (even \& odd \#, prime \#)

$$
\text { 1, 2, 3, 4, ... } \rightarrow[\infty \quad \text { (infinity excluded) }
$$

2) Whole numbers

$$
0,1,2,3,4, \ldots \rightarrow[\infty
$$

3) Integers

$$
-\infty] \leftarrow \ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots \rightarrow[\infty
$$

4) Rational numbers: result from ratios of integers a / b with $b \neq 0$
5) Irrational numbers: All numbers which cannot be expressed by a ratio (examples: $\sqrt[n]{\text { prime } \#}, \pi, e$)
6) Real numbers: include all of the above
7) Imaginary numbers: Real \# multiplied by $\sqrt{-1}=i$
8) Complex numbers: pair of (Real, Imaginary)

Imaginary numbers

For a long time it was believed that Real numbers satisfied all mathematical needs. However, it was observed that a Real number could not be the solution to an equation like (with a real)

$$
x^{2}+a=0 \Rightarrow x= \pm \sqrt{a} \cdot \sqrt{-1}
$$

Similar situations were encountered in a growing number of algebraic problems. To handle the square root $\sqrt{-1}$ a new type of number was introduced, which was called "imaginary" by defining

$$
\sqrt{-1}=i
$$

Complex numbers

Eventually, Complex numbers were formulated as an extension of the ordinary $x-y$ plane, to form a number space representing all algebraic solutions.
" x " represents all real numbers and " y " all imaginary numbers (real numbers multiplied by $\sqrt{-1}=i$).

Since in electrical engineering $\mathfrak{J} m \uparrow$ we use typically

$$
i=\text { current }
$$

it is customary to define instead

$$
\sqrt{-1}=\mathbf{j}
$$

Complex numbers are defined by points or vectors in the complex plane and can be represented in Cartesian coordinates

$$
z=a+j b
$$

or in polar form

$$
z=r \exp (j \theta)=r \cos (\theta)+j r \sin (\theta)
$$

with

$$
\begin{aligned}
& a=r \cos (x)=\text { real part } \\
& b=r \sin (x)=\text { imaginary part }
\end{aligned}
$$

where

$$
\begin{aligned}
r & =|z|=\sqrt{a^{2}+b^{2}} \quad \text { magnitude } \\
\theta & =\angle z=\tan ^{-1}\left(\frac{b}{a}\right) \quad \text { phase }
\end{aligned}
$$

Note that:

$$
z=r \exp (\mathrm{j} \theta)=r \exp (\mathrm{j} \theta \pm \mathrm{j} 2 n \pi)
$$

Example 1:

Express $z_{1}=1+\mathbf{j 1}$ in polar form.
Amplitude

$$
r_{1}=\left|z_{1}\right|=\sqrt{a_{1}^{2}+b_{1}^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

Phase

$$
\theta_{1}=\angle z_{1}=\tan ^{-1}\left(\frac{b_{1}}{a_{1}}\right)=\tan ^{-1}\left(\frac{1}{1}\right)=\frac{\pi}{4}=45^{\circ}
$$

Polar form

$$
z_{1}=\sqrt{2} e^{j \frac{\pi}{4}}
$$

Example 2:

Express $z_{2}=1-\mathbf{j 1}$ in polar form.
Amplitude

$$
r_{2}=\left|z_{2}\right|=\sqrt{a_{2}^{2}+b_{2}^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

Phase

$$
\begin{gathered}
\theta_{2}=\angle z_{2}=\tan ^{-1}\left(\frac{b_{2}}{a_{2}}\right)=\tan ^{-1}\left(\frac{-1}{1}\right)=-\frac{\pi}{4} \\
=-45^{\circ}
\end{gathered}
$$

Polar form

$$
z_{2}=\sqrt{2} e^{-j \frac{\pi}{4}}
$$

Example 3:

Express $z_{3}=-1+\mathbf{j 1}$ in polar form.
Amplitude

$$
r_{3}=\left|z_{3}\right|=\sqrt{a_{3}^{2}+b_{3}^{2}}=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}
$$

Phase

$$
\begin{gathered}
\theta_{3}=\angle z_{3}=\tan ^{-1}\left(\frac{b_{3}}{a_{3}}\right)=\tan ^{-1}\left(\frac{1}{-1}\right)=\frac{3 \pi}{4} \\
=135^{\circ}
\end{gathered}
$$

Polar form

$$
z_{3}=\sqrt{2} e^{j \frac{3 \pi}{4}}
$$

$$
z_{3}=(-1,1)^{\Im m} 11
$$

Every complex number has a complex conjugate

$$
z^{*}=(a+j b)^{*}=a-j b
$$

such that

$$
\begin{gathered}
z \cdot z^{*}=(a+\mathrm{j} b) \cdot(a-\mathrm{j} b) \\
=a^{2}+\mathrm{j} a b-\mathrm{j} a b+(\mathrm{j} b)(-\mathrm{j} b) \\
=a^{2}+b^{2}=|z|^{2}=r^{2}
\end{gathered}
$$

In polar form

$$
\begin{gathered}
z^{*}=[r \exp (\mathrm{j} \theta)]^{*} \\
=r \exp (-\mathrm{j} \theta)=r \exp (\mathrm{j} 2 \pi-\mathrm{j} \theta) \\
=r \cos (\theta)-\mathrm{j} r \sin (\theta)
\end{gathered}
$$

The polar form is more useful in some cases.
For the power of a complex number
$z^{n}=(a+j b)^{n}=(a+j b)(a+j b) \cdots(a+j b)$
the Cartesian form is quite cumbersome.
In polar form the result is immediate

$$
z^{n}=[r \exp (j \theta)]^{n}=r^{n} \exp (j \operatorname{n} \theta)
$$

Also notice that for multiples of $\mathbf{2 \pi}$:

$$
\exp (j 2 n \pi)=1
$$

In the case of roots, use the phase $\theta+2 k \pi$ (with k an integer) not to miss any results (there are \boldsymbol{n} roots):

$$
\begin{gathered}
\sqrt[n]{z}=\sqrt[n]{r \exp (j \theta+j 2 k \pi)} \\
=\sqrt[n]{r} \exp \left[j \frac{\theta}{n}+j \frac{2 k \pi}{n}\right] \\
0 \leq \frac{\theta}{n} \leq 2 \pi
\end{gathered}
$$

In engineering problems, the following identities are often useful for mathematical manipulations:

$$
j=\exp \left(\mathrm{j} \frac{\pi}{2}\right) \quad-j=\exp \left(-\mathrm{j} \frac{\pi}{2}\right)
$$

The relations linking exponentials to trigonometric functions of complex variables are also widely used:

$$
\begin{aligned}
& \cos (z)=\frac{\exp (j z)+\exp (-j z)}{2} \\
& \sin (z)=\frac{\exp (j z)-\exp (-j z)}{2 j}
\end{aligned}
$$

These result from Euler's identities

$$
\exp (\pm j z)=\cos (z) \pm j \sin (z)
$$

Examples:

1) Express in polar form $\quad Z=1$

Amplitude

$$
r=|z|=\mathbf{1}
$$

Phase
$\boldsymbol{\theta}=\angle \boldsymbol{z}=\mathbf{0}^{\circ}$

Polar form

$$
z=1 e^{j 0}
$$

Examples:
2) Express in polar form $\quad Z=\mathbf{j} \mathbf{1}$

Amplitude

Phase

$$
r=|z|=\mathbf{1}
$$

$$
\theta=\angle z=\frac{\pi}{2}=90^{\circ}
$$

Polar form

$$
z=1 e^{\mathrm{j} \frac{\pi}{2}}
$$

Examples:

3) Express in polar form $\quad Z=-1$

Amplitude

$$
r=|z|=1
$$

Phase

$$
\theta=\angle Z=\pi=180^{\circ}
$$

Polar form $\quad Z=1 e^{j \pi}$

Examples:
4) Express in polar form $Z=\frac{1-j 1}{1+j 1}$

Amplitude

$$
r=|z|=\frac{|1-j 1|}{|1+j 1|}=\frac{\sqrt{2}}{\sqrt{2}}=1
$$

Phase

$$
\begin{aligned}
\theta & =\angle z=\angle(1-\mathbf{j} 1)-\angle(1+\mathbf{j} 1)= \\
& =\left(-\frac{\pi}{4}\right)-\left(\frac{\pi}{4}\right)=-\frac{\pi}{2}
\end{aligned}
$$

Polar form

$$
z=1 e^{-j \frac{\pi}{2}}
$$

Ratio of complex numbers

$$
\begin{aligned}
z & =\frac{a+\mathrm{j} b}{c+\mathrm{j} d}=\frac{r_{1} e^{\mathrm{j} \theta_{1}}}{r_{2} e^{\mathrm{j} \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{\mathrm{j}\left(\theta_{1}-\theta_{2}\right)} \\
|z| & =\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
\end{aligned} \quad \angle z=\angle z_{1}-\angle z_{2} . \quad . \quad .
$$

You can also rationalize to make denominator real

$$
\begin{aligned}
z & =\frac{a+\mathrm{j} b}{c+\mathrm{j} d}=\frac{(a+\mathrm{j} b)(c-\mathrm{j} d)}{(c+\mathrm{j} d)(c-\mathrm{j} d)} \\
& =\frac{a c+b d+\mathrm{j}(b c-a d)}{c^{2}+d^{2}} \\
& =\frac{a c+b d}{c^{2}+d^{2}}+\mathrm{j} \frac{(b c-a d)}{c^{2}+d^{2}}
\end{aligned}
$$

Going back to example 4)

$$
\begin{aligned}
& \left.z=\frac{1-\mathbf{j} 1}{1+\mathbf{j} 1}=\frac{1-\mathbf{j 1}}{1+\mathbf{j} 1} \times \frac{1-\mathbf{j 1}}{1-\mathbf{j} 1}\right\}=1 \\
& z=\frac{1-j 2+\left(\mathrm{j}^{2}\right)}{2}=\frac{1-1-\mathrm{j} 2}{2}=-j
\end{aligned}
$$

Amplitude
Phase

$$
\begin{aligned}
& r=1 \\
& \theta=-\frac{\pi}{2}
\end{aligned}
$$

Polar form

$$
z=1 e^{-j \frac{\pi}{2}}
$$

Examples:
5) Express in Cartesian (rectangular) form: $Z=3 e^{-j \frac{\pi}{6}}$

$$
\begin{gathered}
z=3 e^{-j \frac{\pi}{6}}=3\left[\cos \left(-\frac{\pi}{6}\right)+j \sin \left(-\frac{\pi}{6}\right)\right] \\
z=3\left[\frac{\sqrt{3}}{2}+j\left(-\frac{1}{2}\right)\right] \\
z=\frac{3 \sqrt{3}}{2}-j \frac{3}{2}
\end{gathered}
$$

Examples:

6) Express in Cartesian (rectangular) form:

$$
\begin{gathered}
z=3 e^{j \frac{\pi}{6}}+3 e^{-j \frac{\pi}{6}} \\
z=3\left[\cos \left(\frac{\pi}{6}\right)+j \sin \left(\frac{\pi}{6}\right)\right]+3\left[\cos \left(-\frac{\pi}{6}\right)+j \sin \left(-\frac{\pi}{6}\right)\right] \\
z=3\left[\frac{\sqrt{3}}{2}+j\left(\frac{1}{2}\right)\right]+3\left[\frac{\sqrt{3}}{2}+j\left(-\frac{1}{2}\right)\right] \\
z=\frac{3 \sqrt{3}}{2}+\frac{3 \sqrt{3}}{2}+j \frac{3}{3}-j \frac{3}{2}=3 \sqrt{3}-j 0
\end{gathered}
$$

Examples:
7) Express in polar form

$$
z=\frac{(-1+j)^{5}}{1+j}
$$

As found earlier

$$
\begin{gathered}
-1+\mathrm{j}=\sqrt{2} e^{\mathrm{j} \frac{3 \pi}{4}} \quad 1+\mathrm{j}=\sqrt{2} e^{\mathrm{j} \frac{\pi}{4}} \\
(-1+\mathrm{j})^{5}=(\sqrt{2})^{5} e^{\mathrm{j} \frac{3 \pi}{4}}=4 \sqrt{2} e^{\mathrm{j} \frac{15 \pi}{4}} \\
z=\frac{4 \sqrt{2} e^{\mathrm{j} \frac{15 \pi}{4}}}{\sqrt{2} e^{\mathrm{j} \frac{\pi}{4}}}=4 e^{\mathrm{j} \frac{14 \pi}{4}}=4 e^{\mathrm{j} \frac{7 \pi}{2}} \\
z=4 e^{\mathrm{j}\left(2 \pi+\frac{3 \pi}{2}\right)}=4 \underbrace{-e^{\mathrm{j} 2 \pi}}_{=1} e^{\mathrm{j} \frac{3 \pi}{2}}=4 e^{\mathrm{j} \frac{3 \pi}{2}}
\end{gathered}
$$

When time-harmonic functions are considered, it is possible to simplify the analysis of engineering systems by using complex representation.

Example of time-harmonic function:

By invoking Euler's identity, we can write

$$
\begin{gathered}
A \cos (\omega t+\theta)= \\
=\mathfrak{R e}[A \cos (\omega t+\theta)+\mathbf{j} A \sin (\omega t+\theta)] \\
=\mathfrak{R e}[A \exp (j \omega t+j \theta)]
\end{gathered}
$$

Now we are going to use the properties of the exponentials to split frequency from phase:

$$
\begin{aligned}
& \mathfrak{R e}[A \exp (j \omega t+j \theta)]= \\
& \mathfrak{R e}[A \exp (j \omega t) \exp (j \theta)]= \\
& \mathfrak{R e}[\underbrace{A \exp (j \theta)}_{\begin{array}{c}
\text { phasor of the } \\
\text { time-harmonic } \\
\text { function }
\end{array}} \exp (j \omega t)]
\end{aligned}
$$

The "phasor" contains the essential information on amplitude and phase.

For a known frequency $\omega, A \exp (j \theta)$ characterizes completely $A \cos (\omega t+\theta)$.

