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Lecture 17 — Summary

Learning Objectives

1. Review of Complex Numbers

2. Complex number representations
3. Operations with complex numbers



Upcoming Quiz 2

Four Problems

1. Two problems on Circuits with Dependent
Sources

2. Two problems on Transient in RC and RL
circuits

Help sheet available at the exam as in Practice
Quiz 2



Example from

previous lecture

Forsimplicity  RC = 1§

R

+
t>0 _

vs(t) +> Q —— v(t)
ic(t)| —

V¢(t) = cos(t)
ve(t=07) =0V

N

Differential equation: 1

R_C =1 [S_l]

d
dt

|

—v(t) + ve(t) = cos( t)

|

a)27rf1




d
e (t) + v-(t) = cos(t)

From the table of particular solutions
V,(t) = Acos(t + 6)
= A cos(0) cos(t) — A sin(@) sin(t)

Y Y

B C
V,(t) = B cos(t) — Csin(t)

dV
dt P

(t) = —Bsin(t) — C cos(t)



Substituting the particular solution and its derivative
V,(t) = B cos(t) — C sin(t)

E%(t) = —Bsin(t) — C cos(t)
in the original differential equation
d
EvC(t) + v-(t) = cos(t)
> —B sin(t) — C cos(t)

+B cos(t) — C sin(t) = cos(t)

(B —C)cos(t) — (B + C)sin(t) = cos(t)

(B—-C)=1 (B+C)=0 .




(B—C)=1

(B+C)=0

—> B=ACOS@=E

1

1
C = Asin(0) =-3

From the ratio C/B

C Asin(6)
B  Acos(8)
we obtain readily that
—> —
From above:

= tan(f) = —1




From these results, the particular solution is

V,(t) = A t+0) = ! (t z
() = A cos( )_\/ECOS 2

and the complete solution is

Veo(t) = Kie b + icos (t — E)

)

V2 4
Att =07
0= K, +— T K, o —>
= 1+\/—§cos(—1)— s > K
Finally:
Vo (t) = et | 1 (t TL’)
C — . | \/ECOS A







Transient €&——|=——=3» = Steady-state

In many practical situations the transients are very short. We
are interested in describing steady-state system response
with a more immediate mathematical approach for a
specified frequency of operation. This will be accomplished
next by introducing the phasor formalism.
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Brief review of numbers

1)

Natural numbers (even & odd #, prime #)
1,2, 3,4, ..—> [0 (infinity excluded)

2) Whole numbers

3)

4)

0,1,2,3,4,..> [0
Integers

-0] ¢«~..,-4,-3,-2,-1,0,1,2,3,4, ... > [©
Rational numbers: result from ratios of integers
a/bwithb = 0
Irrational numbers: All numbers which cannot be

expressed by a ratio (examples: 'i/prime #,me)
Real numbers: include all of the above

Imaginary numbers: Real # multiplied by v—1 =i
Complex numbers: pair of (Real, Imaginary)
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Imaginary numbers

For a long time it was believed that Real numbers
satisfied all mathematical needs. However, it was
observed that a Real number could not be the
solution to an equation like (with a real)

x*+a=0= x=+a- V-1

Similar situations were encountered in a growing
number of algebraic problems. To handle the square

root Vv—1 a new type of number was introduced,
which was called “imaginary” by defining

V-1=i
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Complex numbers

Eventually, Complex numbers were formulated as an
extension of the ordinary x-y plane, to form a number
space representing all algebraic solutions.

“x” represents all real numbers and “y” all imaginary
numbers (real numbers multiplied by v—1 = i).

A

Since in electrical engineering| 3m

we use typically

i = current

it is customary to define instead

V-1 =]j Re
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Complex numbers are defined by points or vectors in
the complex plane and can be represented in Cartesian
coordinates

z=a-+jb
or in polar form

z=rexp(jO@) =rcos(0) +jrsin(0)

with a = r cos(x) = real part
b = r sin(x) = imaginary part

where

r=|z| = \/a2 + b%  magnitude

b
0 =,z=tan"1 (E) phase



Re

Note that:
z=rexp(jod) =rexp(jo tj2nm)



Example 1:

Express z; =1 +j1 in polar form.

Amplitude
ri = |Z1| Z\/a%‘FbZ =\/12+12 =\/E

Phase
b1 1 T
0, =2z, =tan"1|—|=tan1|{=- | =—=45°
1 Z1 dll (al) dl (1) 4
Polar form






Example 2:

Express z, =1 —j1 in polar form.

Amplitude
ry = |2, =\/a%+b2 =12+ (-2 =v2

Phase
bz —1 T
0, =27, =tan 1|—<=|=tan1(— | = ——
2 Zy dll (az) dll (1) 4
= —45°
Polar form

. IT
Zy) = \/26_11






Example 3:

Express zz3 = —1 +j1 in polar form.

Amplitude
r3 = |Z3| =\/a§ +b2 =\/(—1)2+12 :\/E

Phase
b3 1 31T
0. =22z-=tan1|—|=tan1|— | = —
3 Z3 dll <a3) dll (_1) 4
= 135°
Polar form

.3
Z3 =\/Ee]T
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Every complex number has a complex conjugate

z'=(a+jb)"=a—jb

such that
z'z =(a+jb) (a—jb)
= a’* + jab — jab + (jb)(—jb)

= a® + b?% = |z|? = r?

In polar form
z" = [rexp(jo)]
=rexp(—j@) =rexp(j2mr—jo)
=1 cos(0) — jrsin(0)



23



The polar form is more useful in some cases.

For the power of a complex number
z"=(a+jb)*=(a+jb)(a+jb) - (a+jb)

the Cartesian form is quite cumbersome.
In polar form the result is immediate

z" = [rexp(jo)]" =r"exp(jno)
Also notice that for multiples of 2m:

exp(j2nm) =1
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In the case of roots, use the phase
0 + 2kt (with k an integer) not to miss
any results (there are n roots):

Nz = \/rexp(jO + j2km)

3, 2kt
n

=x/FeXp[1 —+]J

0
0<—<2m
n



In engineering problems, the following identities are
often useful for mathematical manipulations:

j=exp(i5)  —i=exp(-iz)

The relations linking exponentials to trigonometric
functions of complex variables are also widely used:

exp(jz) + exp(—j z)
2

exp(jz) — exp( —jz)
2j

cos(z) =

sin(z) =

These result from Euler’s identities

exp(+jz) = cos(z) +jsin(z)
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Examples:

1) Express in polar form z=1
Amplitude r — ‘Z‘ =1
Phase 0 =2,z=0°

Polar form Zz=1e j O



Examples:

2) Express in polar form
Amplitude r — ‘Z‘
Phase 0=,z
Polar form z=1e

z=]1



Examples:

3) Express in polar form z=-—1
Amplitude r = ‘Z‘ =1
Phase O=2,z=m=180°

Polar form Zz=1 ei”



Examples:

1-j1
4) Express in polar form Z — ——
1+j)1
. B -1 V2
Amplitude r = ‘Z‘ = 1+i1] ~ 7z 1

Phase P=2z=2£(1—-j1)—2£(1+j1) =

-(-3)-@) =3

. IT

Polar form z=1e R




Ratio of complex numbers

a+jb_r1ei91 Ty Li(81-62)

7 = — = — =
c+jd ryef2 r,
|z, |
|1z| = — LZ=LZ{— LZy
|z, |

You can also rationalize to make denominator real
a+ijb (a+jb)(c—jd)
c+jd (c+jd)(c—jd)

ac + bd + j(bc — ad)
B c? + d?

ac+bd  (bc—ad)

= +
Z+dz )t a

zZ =




Going back to example 4)

1-j1 1-j1_1-j1
Z — — = — X . L _ 1
1+j1 1+j1 1-j1
\/ y
- 1 complex conjugate (1 + j1)(1 — j1) = 2
~
1-2+(j) 1-1-j2
B 2 - v = )
Amplitude r=1
Phase Bz_g

Polar form z=1e 2 )



Examples: i~
5) Express in Cartesian (rectangular) form: Z = 3 e 6

z=36_i%=3[C05( :) | iSi“(_E)]

6
—3\/§+' 1
=22 I T2)
3v3 .3
Z — ]2



Examples:
6) Express in Cartesian (rectangular) form:

IT

YA
z=3e'6+3e7'6

7 =13 [COS (g) +j sin (g)] +3 [cos (— %) + ) sin (_ g)]

()




Examples: (—1 + ])5
7) Express in polar form Z = 1+
J

As found earlier

. 3 1T
_1_|_j:\/§elTn 1+j=vV2e’s

(_1+i)5 (\/_) e]5—_4\/—e 1511'

. 157

4+/2e’ 2 147 n

Z = —— = el ™4 =4e’'2
V2el%



When time-harmonic functions are considered, it is
possible to simplify the analysis of engineering
systems by using complex representation.

Example of time-harmonic function:

A cos (wt + 0)
/ § \

- Angular frequency
Amplitude phase
w = 2nf

By invoking Euler’s identity, we can write
A cos (wt + 0) =
= Re|A cos (wt + 0) +j Asin (wt + 0)]
= Re|A exp(jwt + jO) |



Now we are going to use the properties of the
exponentials to split frequency from phase:

Re|d exp(jwt +jO) | =
Re|A exp(jwt)exp(jO)] =
Re| Aexp(jO) exp(jwt)]

phasor of the
time-harmonic
function

The “phasor” contains the essential information on
amplitude and phase.

For a known frequency w, A exp(j@) characterizes
completely 4 cos(wt + 0).
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