ECE 205 “Electrical and
Electronics Circuits”

Spring 2024 - LECTURE 18
MWEF —12:00pm

Prof. Umberto Ravaioli
2062 ECE Building



Lecture 18 — Summary

Learning Objectives

1. Phasor representation of harmonic
functions

2. Phasor representation of circuit problems in
sinusoidal regime

In Canvas Module Week 7
* Trigonometry Identities Table
e Table of Trig function values at special angles .



Examples:

1-j1
4) Express in polar form Z — ——
1+j)1
. B -1 V2
Amplitude r = ‘Z‘ = 1+i1] ~ 7z 1

Phase 0=2z=2£(1—-j1)—2(1+j1) =
=(-3)-G)=-2

Polar form z=1e




Ratio of complex numbers

a+jb_r1ei91 Ty Li(81-62)

7 = — = — =
c+jd rpef2 r,
|z, |
|1z| = — LZ=LZ{— LZy
|z, |

You can also rationalize to make denominator real
a+ijb (a+jb)(c—jd)
c+jd (c+ijd)(c—jd)

ac + bd + j(bc — ad)
B c? + d?

ac+bd  (bc—ad)
“erar Ty az

zZ =




Going back to example 4)

1-j1 1-j1_1-j1
Z — — = — X . 1
1+j1 1+j1 1-j1
\/ y
- 1 complex conjugate (1 + j1)(1 — j1) = 2
~
1-2+(j) 1-1-j2
B 2 - v = )
Amplitude r=1
Phase Bz_g

Polar form z=1e )2



Examples: _i"
5) Express in Cartesian (rectangular) form: Z = 3 e 6

z=36_i%=3[C05( :) | iSi“(_E)]

6
—3\/§+' 1
=22 I T2)
3v3 .3
Z — ]2



Examples:
6) Express in Cartesian (rectangular) form:

IT

YA
z=3e'6+3e7'6

7 =13 [COS (g) +j sin (g)] +3 [cos (— %) + ) sin (_ g)]



Examples:
6) Express in Cartesian (rectangular) form:

IT

YA
z=3e'6+3e7'6

7 =13 [COS (g) +j sin (g)] +3 [cos (— %) + ) sin (_ g)]

()




Examples: (—1 + ])5
7) Express in polar form Z = 1+
J

As found earlier

. 3 T
_1_|_j:\/§e'Tn 1+j=vV2e’s

(_1+i)5 (\/_) e]5—_4\/—e 1511:



Examples: (—1 + ])5
7) Express in polar form Z = 1+
J

As found earlier

. 3 T
_1_|_j:\/§e'Tn 1+j=vV2e’s

(_1+i)5 (\/_) e]5—_4\/—e 1511'

.15
4\2e) & 147 _7m
Z= —— =4e! 4 =4e’2
V2el2
31T (__\| 31T .311'
z = 4¢ (2”+ ) 4,27 12 = ¢

\__/



In engineering problems, the following identities are
often useful for mathematical manipulations:

j=exp(i5)  —i=ex(-iz)

The relations linking exponentials to trigonometric
functions of complex variables are also widely used:

exp(jz) + exp(—j z)
2

exp(jz) — exp( —jz)
2i

These result from Euler’s identities

cos(z) =

sin(z) =

exp(tjz) = cos(z) + j sin(z)
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When time-harmonic functions are considered, it is
possible to simplify the analysis of engineering
systems by using complex representation.

Example of time-harmonic function:

A cos (wt + 0)
/ § \

- Angular frequency
Amplitude phase
w = 2nf




When time-harmonic functions are considered, it is
possible to simplify the analysis of engineering
systems by using complex representation.

Example of time-harmonic function:

A cos (wt + 0)
/ § \

- Angular frequency
Amplitude phase
w = 2nf

By invoking Euler’s identity, we can write

A cos (wt + 0) =



When time-harmonic functions are considered, it is
possible to simplify the analysis of engineering
systems by using complex representation.

Example of time-harmonic function:

A cos (wt + 0)
/ § \

- Angular frequency
Amplitude phase
w = 2nf

By invoking Euler’s identity, we can write
A cos (wt + 0) =
= Re|A cos (wt + 0) +j Asin (wt + 0)]



When time-harmonic functions are considered, it is
possible to simplify the analysis of engineering
systems by using complex representation.

Example of time-harmonic function:

A cos (wt + 0)
/ § \

- Angular frequency
Amplitude phase
w = 2nf

By invoking Euler’s identity, we can write
A cos (wt + 0) =
= Re|A cos (wt + 0) +j Asin (wt + 0)]
= Re[A exp(jowt +jO) |



For unambiguous treatment of phasors, A

must be a magnitude (a positive value).

A negative value contains a hidden phase!

7\A\ cos (wt + 0)

+1 or + 180° PHASE SHIFT

—|A| cos (wt + 0)
= |A| cos (wt + 6 + )
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A cos (wt)

e

A

ad/s



A cos (wt — n/3)

A DA A
VALY VAV

A=4 0=-m/3 w =75 rad/s




A cos (wt + n/3)

AANA
TR

A=4 0 =mn/3 w =75 rad/s




0s (wt + /)

LD
VYV




Now we are going to use the properties of the
exponentials to split frequency from phase:

Re|d exp(jwt +jO) | =
Rel|A exp(jwt)exp(jO)] =
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Now we are going to use the properties of the

exponentials to split frequency from phase:
Re|d exp(jwt +jO) | =
Rel|A exp(jwt)exp(jO)] =

Re| Aexp(jO) exp(jwt)]

phasor of the
time-harmonic
function

22



Now we are going to use the properties of the
exponentials to split frequency from phase:

Re|d exp(jwt +jO) | =
Re|A exp(jwt)exp(jO)] =
Re| Aexp(jO) exp(jwt)]

phasor of the
time-harmonic
function

The “phasor” contains the essential information on
amplitude and phase.

For a known frequency w, A exp(jO) characterizes
completely 4 cos(wt + 0).
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Why do we actually map the (Amplitude, Phase) pair
into the complex plane? — Because we can use the
powerful vector algebra of complex numbers to
perform all kinds of mathematical manipulations.

Complex numbers are actually
“vectors” in the complex plane

\9

Re
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We have reviewed that complex numbers can be
represented in Cartesian (rectangular) form

Z = a\+ jb
or in polar form R \A

z=rexp(jo) = cos(B)\ +ri r sin(HS

We wish to use complex functions to represent circuits
driven by sinusoidal inputs at specific frequencies.

25



We have reviewed that complex numbers can be
represented in Cartesian (rectangular) form

Z = a\+ jb
or in polar form R \A

z=rexp(jo) = cos(H)\ +ri r sin(HS

We wish to use complex functions to represent circuits
driven by sinusoidal inputs at specific frequencies.

Objection: We already have trigonometry to represent
sinusoidal functions. Why should we introduce
additional complications?

Let’s revisit again the steps needed to solve a simple circuit
example shown in Lecture 16.
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From Lectures 16 & 17

Solution:

R

S1

t>0+

vs(t) +> Q
ic(t)

— vc(t)

RC = 1s

Differential equation:

ves(t) = cos(t)

Uc(t = O_) = 0V

d
dt

—ve(t) + v (t) = cos(t)

Ve(t) =

e

+ ——CO0S

2 42

Tt
t — —

)|




COS (

V2

t-7)

—>g




Ve(t) = e’ + i(:os (t _E)

(¢ VN J
Y Y
Transient Steady-state
component component

For sufficiently long time, the solution is consisting
only of the steady-state component

Ve(t) = %cos (t — %)

Recall that the input was:

vs(t) = cos(t) 2



In many engineering problems of practical importance,
we only need to find the steady-state response of the
system for sinusoidal (single-frequency) input

V;, = A;, cos(wt — 0;,)

Linear System

!

Vour = Aous cos(wt — Hout)
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Consider a time-harmonic co-sinusoidal function:
V(t) =V, cos (wpt)
wo = 2m f [rad/s]

N

A vector with magnitude V,,, and rotating at frequency w, describes the
evolution of a harmonic function on a 2D plane. -



Phase accounts for anticipation or delay in the cycle

At3 = 93/(1)0

At; = 0;/wy

V3 (t) = Vm COS ((I)Ot + 93) &"—ﬂ/ /VZ (t) - Vm Ccos ((Dot o 92)

/"

\/

[ Y

Vi (t) =V, cos (wot) // / \

W )]
IV

/
/
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Phasor representation

A time-harmonic co-sinusoidal function of known
frequency can simply be represented by a pair of
values: Amplitude and Phase, which identify a number

in the complex plane

Representation in v(t) p— Vm COS (wot + HV)

the time-domain

Phasor representation in V — VmLHV

the frequency domain

or, equivalently:

V=V,e’%

33



Examples

Find the amplitude and phase values to represent in
phasor form:

i(t) = 5cos (1000t + 30°)

34



Examples

Find the amplitude and phase values to represent in

phasor form:

i(t) = 5cos (1000t + 30°)

I = 5,230° Phasorform

In radians: 30° X

I=52m/6

(radians)

T

180°

/[4

6

] = 5eim™/6
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Examples

Find the amplitude and phase values to represent in

phasor form:

i(t) = 5sin (1000t + 30°)

We need to transform sine into cosine: sin(¢) = cos(¢ — 90°)

i(t) = 5 cos (1000t + 30° — 90°)
= 5 cos (1000t — 60°)

I = 52 — 60° Phasorform

I=52—m/3

(radians)

] = 5e7im/3

36



Examples

Find the cosine signal at frequency wy = 1000 rad/s
represented by the phasor V = j5:

. T
V=j5=5e"" =5¢2

=5290°=524m/2

v(t) = 5 cos (1000t + 90°)
= 5 cos (1000t + /2)



Suppose you need to add two time-harmonic functions
v1(t) = A1 cos (wt+ 64)

v5(t) = A, cos (wt + 05)

With trigonometry you have to use cumbersome
formulas like:

X+Y X—-Y
cos X cosY=2cos( > )cos( 5 )

38



In phasor form:
v41(t) = A1 cos (wt + 01) = Rel[Ajexp(jwt +jO,) |
< Vi =A4,exp(jO1) = 41404

Vector addition
Re
O >

39



In phasor form:

v41(t) = A1 cos (wt + 01) = Rel[Ajexp(jwt +jO,) |
< Vi =A.exp(jO,) = 41404

v,(t) = A, cos (wt + 0,) = Rel|A,exp(jwt +jO,) |
o V, = A,exp(jo,) = 4,20,

Vector addition

40



In phasor form:
v41(t) = A1 cos (wt + 01) = Rel[Ajexp(jwt +jO,) |
< Vy =Aqexp(jOq) = A14£04
v,(t) = A, cos (wt + 0,) = Rel|A,exp(jwt +jO,) |
o V, = A,exp(jo,) = 4,20,
v1(t) + v(t) © Vi +V, = A1exp(jOq) + Aexp(jOy)

CAUTION: & is a “transformation” NOT an “equality”!

Im 4
A1204 + A,20,

Vector addition

41



Example — Express the following in its phasor form:

v(t) = 2v2 sin (1000t + %) +2V2 cos (1000t + g)

42



Example — Express the following in its phasor form:

v(t) = 2v2 sin (1000t + %) +2V2 cos (1000t + g)

First term:
T T
v1(£) = 22 cos (1000t - E)

T
v,(t) = 2\/2 cos (1000t — Z)

V1=Z\/EL—§:2\/E€—]'Z

=22 (cos% — Jsin %)
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Example — Express the following in its phasor form:

v(t) = 2v2 sin (1000t + %) +2V2 cos (1000t + g)

Second term:

'[3
v, (t) = 2V2 cos (1000t + Z)

T . TC
V1=2\/fAZ:2\/§el4

=22 (cos% + jsin %)

44



Example — Express the following in its phasor form:

v(t) = 2v2 sin (1000t + g) +2V2 cos (1000t + g)

Combine the results:

V=V;+V, = Zﬁ(cosg—jfﬁé) + Zﬁ(cosg+js}{%{)

= 22 (2 cosg) = 2v2(2V2/2) = 420°

— > v(t) = 4 cos(1000¢t) [V]
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RC Circuit Example with time-harmonic forcing term

+

Find ig(t) when v(t) is
measured as:

10
v(t) = — cos

V2

R=1Q

(1000t - %)

C = 1mF

46



RC Circuit Example with time-harmonic forcing term

v® " |
q Find ig(t) when v(t) is
iR(t)l ic(t)l measured as:
+ 10 -
is(t) T) R ¢ — v(t) = N (1000t - Z)
R =1Q C = 1mF
KCL i¢ = iR(t) + ic(t) — @ n Cdv(t)

R dt
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RC Circuit Example with time-harmonic forcing term

v(t) .
a Find ig(t) when v(t) is
iR(t)l iC(t)l measured as:
_ + 10 T
(D) f P ¢~ v®)= 7 O3 (1000t _ Z)
R=1Q C = 1mF
v(t dv(t
@] i = in(®) +ic) =) + ¢ T
10 T 104 T
= 1000t ——) — 103 —sin (1 ——
NG cos( 4) NG sm( 000t 4)
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RC Circuit Example with time-harmonic forcing term

v(t
E ) Find ig(t) when v(t) is
iR(t)l iC(t)l measured as:
_ + 10 T
(D) f P ¢~ v®)= 7 O3 (1000t _ Z)
R =10 C = 1mF
v(t dv(t
@] i = in(®) +ic) =) + ¢ T
10 T 104 T
= 1000t — — ) — 1073 —sin (1000t — —
" cos (1000t - ) " sin (1000t - )
= o (1000t _ —) _ \/—Esm (1000t _ —)
10 . (1000t ) L1 (1000t + )
= — ——)+—=cos
\/E \/E 49



RC Circuit Example with time-harmonic forcing term

v(t) . :
N Find ig(t) when v(t) is
iR(t)l iC(t)l measured as:
+ 10 T
io(t) f) P ¢ 2= v(® = cos (1000t - Z)
R =1Q C = 1mF

is(f) = — cos (1000t — )+ 19 cos (1000t + -)
V2 4) " 2 4

10 nt 10 =«
Phasor form Ilg=—¢——+—2£—

V27 4274

10 (_1‘[)_'_10 (]Tl')
= —€exp\|\—J— —€X —
vz P\ ) T 7 Py

50



RC Circuit Example with time-harmonic forcing term

v » |
q Find ig(t) when v(t) is
iR(t)l ic(t)l measured as:
+ 10 -
is(t) T R ¢ — v(t) = N (1000t - Z)
R =1Q C = 1mF
[ — 10 T 10 T
ST 2P (‘JZ) t 7 exPUy)

_10( T N Tl'+__1l')
_\/ECOS‘L ]):447 cos4 yx{ll

10/ 2
IS: 22

): 1020° & ig(t) = 10 cos(1000¢) [A]
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