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Lecture 20 — Summary

Learning Objectives
1. Solution of circuit problems with phasors
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Current and voltage are in phase in a resistor
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Impedance of Capacitor
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Pure capacitive reactance: current LEADS voltage by 90°
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Current LEADS voltage by 90°
(it reaches peak value earlier)

v(t) 10

Waveforms are in “quadrature”




Total reactance is capacitive: current LEADS voltage
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Current LEADS voltage
(it reaches peak value earlier)
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But waveforms are NOT in “quadrature”
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Impedance of Inductor

V
L _
—>
|
di;(t ~ ~
v(t) =1L C’ii ) < V=jwll
Vv Vv,,z0,
= — = = iwl
‘=7 1.0, % .




Inductor
V,,20,
7 V.20, B
— oL —
0 0 il
| (Y 2

I

V’"Ae /2

wlL (v_n )
1=1- *
J = 2

Current LAGS voltage by 90°

12



Pure inductive reactance: current LAGS voltage by 90°

~

V=ZI =joLT

jwlL

=~




Current LAGS voltage by 90°
(it reaches peak value later)

i(t)

v(t) 10

Waveforms are in “quadrature”
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Total reactance is inductive: current LAGS voltage
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Current LAGS voltage
(it reaches peak value later)

v(t)

N~

But waveforms are NOT in “quadrature”
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Example of Phasor Analysis

Determine i(1)

i(t) 10

vs(t) = 10 cos(3t)

w = 3rad/s

—V/\V\

vs(t) i)

3Q)

1H

jwL =) X 3 X 1H =)3 ()

1/jwC = —j/wC = —j/(3x1/9F) = —j3 Q .



Phasor form

vs(t) = 10 cos(3t)

N Z, w = 3rad/s
I 10
<VAVAY
g
30 z,
Vs = 1040°<i> Z1< -3
\]3
Z,=3+j3Q "
Z, = —j3 Q Z3=121//Z, .
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Z3=12//Z, = 3173 | i3

~i3+3+i3\" ([ 3\ . .
- (—j3(3 +§){) - (9 — j9) = (3713



1 1\ "
Zs=Z1//Zz=( : : )

(=i +3+3\ [ 3\
- (—j3(3 +® - (9 — j9) = (3713

Zog=Z4+21//Zy=1+3—j3 = (4—j3)Q
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Zeq (4‘ R ]3)
10(4 +j3) 40 + j30

T (4-i3)(4+j3) 16+9 —j1Z +j1Z
- _40+j30
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_ Vs 1020°
I — — - A
Zeq (4‘_]3)
- _ 10(4 +j3) 40 +j30
" (4-j3)(4+ij3) 16+9—j1Z2 +j1Z
T—4O+i30—16+'12A
= 25 = 1. ] 1.

|IT|=v1.62+1.22=v4=2A

_ 2
T =0; =tan™! (—) = 0.6435rad = 36.87°

1.
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_ Vs 1020°
I = = A
Z eq (4‘ o ]3)
Alternative approach
110.20°| 10 10 10

2T =0.6435rad = 36.87°
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_ Vs 1020°
I = = — A
Zeq (4‘ o ]3)

~

| T|=2A

2T =0.6435rad = 36.87°

I =2,36.87°A|or | T =2exp(j36.87°)A

< | i(t) =2cos(3t+36.87°) A
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EXAMPLES

Resonance in RLC circuits

Let’s take this opportunity also to retrace
the steps leading to phasors, for review.



Time-differential equations for time harmonic signals
can be transformed into algebraic equations for phasors.

L R

T~/

—

v(t) t) i(t)

I
|
ﬁ

This RLC circuit is described by the integro-differential
equation (KVL)

di(t) + Ri + lf i(t)dt

=1
v(t) dt C



t Represents the total charge

J i(t)dt = Q accumulated in the capacitor
1" Q Represents the potential at
Ef_ool(t)dt ¢~ Ve () the terminals of the capacitor

Integro-differential equations are harder to solve, but
we can take the derivative
di(t) 1

t
ey + Ri + Ej_ool(t)dt

v

dv(t) Ldzi(t) +Rdi+ 1 .
dt = dt? dt Cl()

v(t) =L
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For a time-harmonic excitation, voltage and current
will have the form

v(t) = Vocos(wt + Oy)
i(t) =Iycos(wt + Oy)

with phasors
V =Voexp(joy)
I =Iyexp(jO))
If the voltage excitation is given:
Vo Oy are inputs

I, 6 are unknowns



Time-differential equations for time harmonic signals
can be transformed into algebraic equations for phasors.

: dv(t d%i(t 1
Time O _) ()+R—+—l(t)
domain dt dt? dt
@ Phasor Transformation
Phasor - _ o .1
(frequency) JwV =L ]w( Jw I) + Rjwl + C |
domain 1
V=jwLl +RI+—1T
=) jwC
V=(R+jwL - 1 T
w
) wC
E Y

Impedance Z 30



_ 1) . .
V=(R+joL—j—|T =21
(#1015

is a new form of Ohm’s law!

Complex Real Imaginary
Z R + ' L 1
= WL — ——
) wC
\ J \ J \ J
Y Y Y

Impedance Resistance Reactance
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The equation is easily solved

Vv=2ZI1 I v
— - —
7
_ % _
= 7~ = loexp(jo))
(R+jwL—j-o

to obtain the unknowns I, and 0,

The time-dependent solution is obtained from a
backward phasor transformation (anti-transform)

i(t) = Retpexp(jO)exp(jwt)}
= Iycos(wt + ;)
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The phasor formalism has provided a convenient way to solve
time-harmonic problems in steady state, without differential
equations (which are only needed for transients).

The exponential representation of phasors allows immediate
separation of frequency and phase information.

Integro-differential
equations

Transform

i1(t)=72

—

|
i Direct Solution
| ( Transients )

¥

i(t)

Anti-

k4

Algebraic equations
based on phasors

~y

I=7?

Solution

Transform

m~
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The simple RLC circuit example with elements in series
illustrates clearly the main properties of an impedance

 The resistance is not function of w

* The inductive component is proportional to w
* The capacitive component is inversely proportional to w

Inductive components are positive

Capacitive components are negative

In series connection, inductive and capacitive
components simply add up.
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Resonance

At a certain frequency w, the magnitudes of
the two reactive terms are equal, so they

cancel out (together, they behave like a short
circuit)

the impedance becomes purely resistive.

1 1
W, = —

VLC

resonance condition

w, L =

w,.C
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The peak value of the current is maximum at resonance

Example: ‘ T‘ e ‘ V‘
Vo =10V R =10 \/R2+(wL—iC)2
w
O Glradsl
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Consider now a circuit with L and C in parallel

L
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jolL 1 — w2LC
When w=20 Zi, =R
- 1 |
I W= —— Zin — 00 I reso;a.nce
:_ ______ L_ C_' ____________ J| condition
) — OO —

At the resonance condition, the reactance (parallel of
L and C) behaves like an open circuit and no current
can flow.



The peak value of the current is zero at resonance

1] =

V, = 10V

L =1H R2+(

w [rad/s] 39




Find phasors V{,V,, V3, 14,15, 15

(We can drop the wavy hat " from now on, since we are getting used to phasors)

Let’s use Node Voltage method

2()
By inspection \/\/\/
Vl — ZV 125
—j1 1290°

Node 2 KCL | F1£290° =0

_il 1 40



Node 2 KCL VZ — Vl VZ

F—= +1£90° = 0
—j1 1
iV, —2j+V,+j1=0 > V(1 +j) =1
i1 i1(1 — | 1+
v, =— i1 —j) ~ ) _0.5+j0.5

T(@+) A+pa-jp 2



V1=2V

Node 3 KCL Vg V3 —2

| 1£90°=0
2 2
1 1 1+j1
—j=V3+=Vs—1—-j1=0 > V5 =

_2(1+ j1)(1 +j1) iy

V3 2 J .




220° i
Currents

11—12=

Vl —_ ZV \/if/l\/
—

VZZOS‘I‘iOSV v —j1

Vi =j2V

Vi-V, 2-(0.5+j0.5)

—j1 —j1

=1—j

2 2

13—12—149002 O

Also:

I; =V3/j2 =j2/j2 =1

0.5+j1.5A

I;-(1-j1)-j1=0

I3=1A
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Source Transformations

The approach we used before works for phasors, too.

|—o

Vs Ci

—> s CD

O
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Source Transformations

Ig (f) Zs —> Vg Ci
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Example

ITI}F
| |
i <20
4.()
i1(t) ‘D Q i2(t)
SmF 40mH

T

i{(t) = 1cos(100t) A
i,(t) = 0.5co0s(100t —90°) A

Find i(t)




Redraw with Phasors —j10 w =100rad/s
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Source Transformations (4—-j2)Q

: ) | —
L 4 —j2)V

) [Joowa

1,0° A

2 + j4 R

V= —j0.5(2+j4) = (2—j1) V



(4—j2)Q —j10Q

—{__ —
(i (4 —j2)V (2 - il)VCD
N
KVL (2 +j4)Q

—-4-j2)-2—-j1)+I1[(4—-j2)-j10+ (2+j4)] =0

—> (6-j3)=1(6—j8)
6—j3 (6—j3)(6+j8) 60+j30
6—j8 100 100

I =

=0.6+j0.3A



T)
Ci (4 —j2)V (2 - il)VCD

(4-j2)Q —-jloQ@ —>

i(t)
— |

[ —

I=0.6+j0.3A (2 +j4)Q

0.3
I =0.62 + 0.32 exp <j tan~! (—))

—

0.6

= 0.670820.46365rad = 0.6708226.57°

i(t) =0.6708 cos(100t + 26.57°)
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