ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 21 MWF – 12:00pm

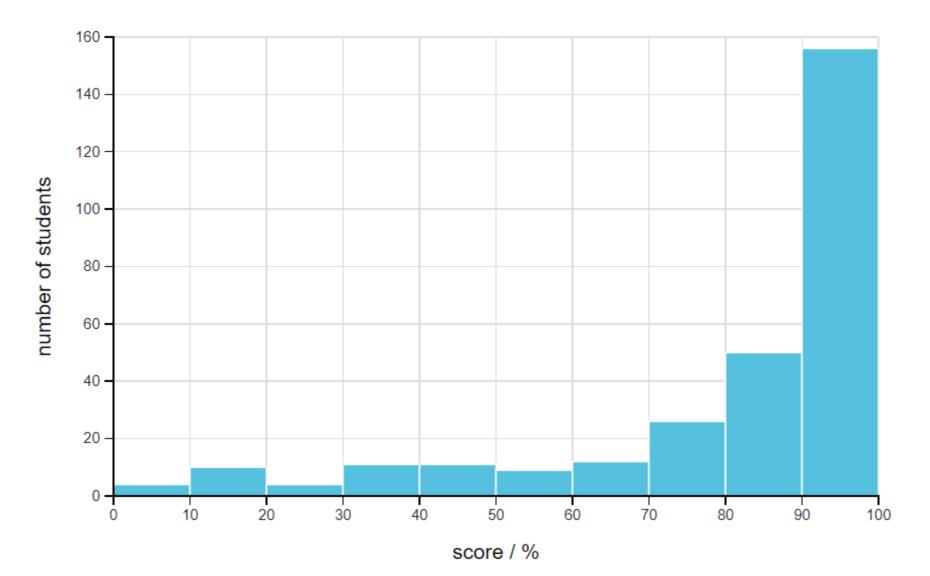
Prof. Umberto Ravaioli

2062 ECE Building

Lectures 21 – Summary

- **Learning Objectives**
- 1. Solution of circuit problems with phasors

Quiz 2 – Grade Distribution



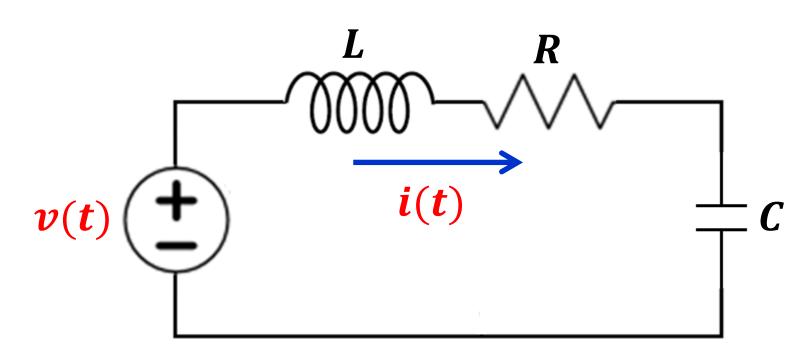
Quiz 2 – Statistics

Number of students	293
Mean score	81%
Standard deviation	24%
Median score	91%
Minimum score	2%
Maximum score	100%
Number of 0%	0 (0% of class)
Number of 100%	30 (10% of class)

EXAMPLES

Resonance in RLC circuits

Let's take this opportunity also to retrace the steps leading to phasors, for review. Time-differential equations for time harmonic signals can be transformed into algebraic equations for phasors.



In the previous lecture we found that this circuit is described by a second order differential equation

$$\frac{dv(t)}{dt} = L\frac{d^2i(t)}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i(t)$$

Time-differential equations for time harmonic signals can be transformed into algebraic equations for phasors.

 \mathbf{a}

Time
domain
$$\frac{dv(t)}{dt} = L \frac{d^2 i(t)}{dt^2} + R \frac{di}{dt} + \frac{1}{C} i(t)$$

Phasor Transformation
Phasor
(frequency)
domain
$$\tilde{V} = L j\omega(j\omega \tilde{I}) + R j\omega \tilde{I} + \frac{1}{C} \tilde{I}$$

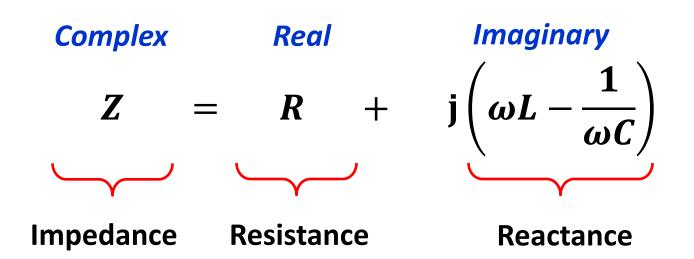
$$\tilde{V} = j\omega L \tilde{I} + R \tilde{I} + \frac{1}{j\omega C} \tilde{I}$$

$$\tilde{V} = \left(R + j\omega L - j\frac{1}{\omega C}\right) \tilde{I}$$

Impedance Z

$$\widetilde{V} = \left(R + j\omega L - j\frac{1}{\omega C}\right)\widetilde{I} = Z\widetilde{I}$$

is a new form of Ohm's law!



The equation is easily solved

$$\widetilde{V} = Z \widetilde{I} \quad \rightarrow \quad \widetilde{I} = \frac{\widetilde{V}}{Z}$$
$$\widetilde{I} = \frac{\widetilde{V}}{\left(R + j\omega L - j\frac{1}{\omega C}\right)} = I_0 \exp(j\theta_I)$$

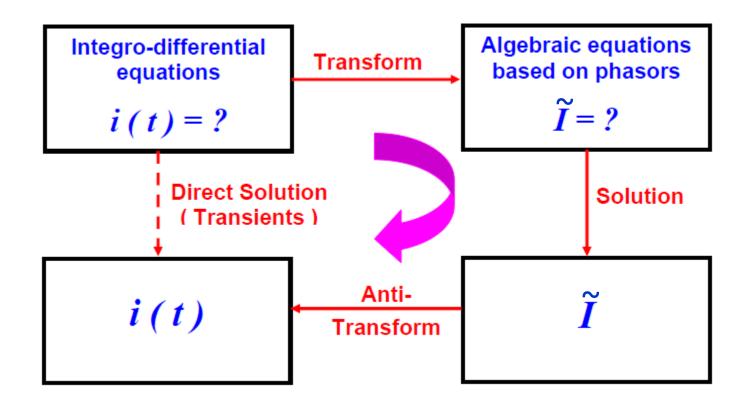
to obtain the unknowns I_0 and θ_I

The time-dependent solution is obtained from a backward phasor transformation (anti-transform)

$$i(t) = \Re e\{I_0 \exp(j\theta_I) \exp(j\omega t)\}$$
$$= I_0 \cos(\omega t + \theta_I)$$

The phasor formalism has provided a convenient way to solve time-harmonic problems in steady state, without differential equations (which are only needed for transients).

The exponential representation of phasors allows immediate separation of frequency and phase information.



The simple RLC circuit example with elements in series illustrates clearly the main properties of an impedance

- The resistance is not function of ω
- The inductive component is proportional to ω
- The capacitive component is inversely proportional to ω

Inductive components are positive Capacitive components are negative

In series connection, inductive and capacitive components simply add up.

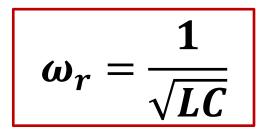
Resonance

At a certain frequency ω_r the magnitudes of the two reactive terms are equal, so they cancel out (together, they behave like a short circuit)

$$Z = R + j\omega_r L - j\frac{1}{\omega_r C} = R$$

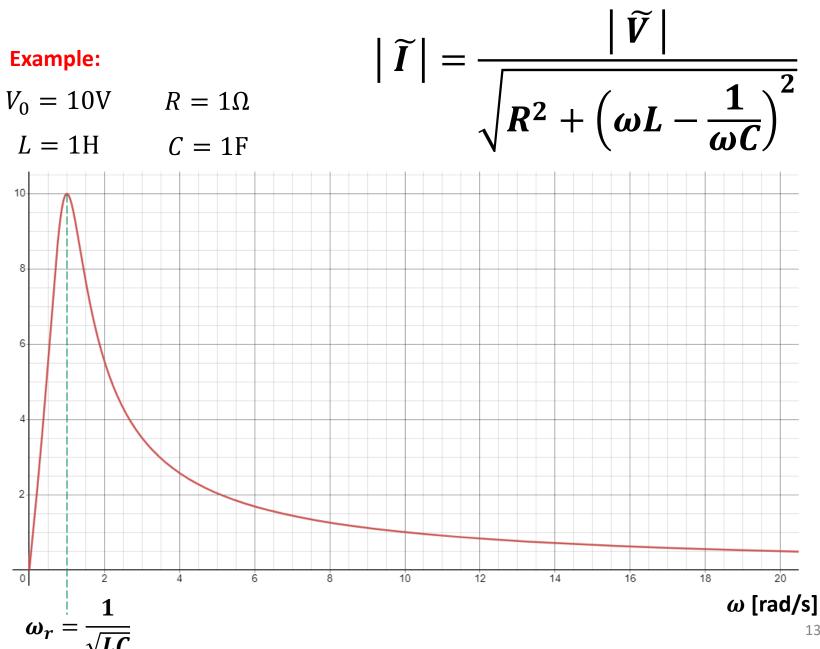
 \rightarrow The impedance becomes purely resistive.

$$\omega_r L = \frac{1}{\omega_r C}$$

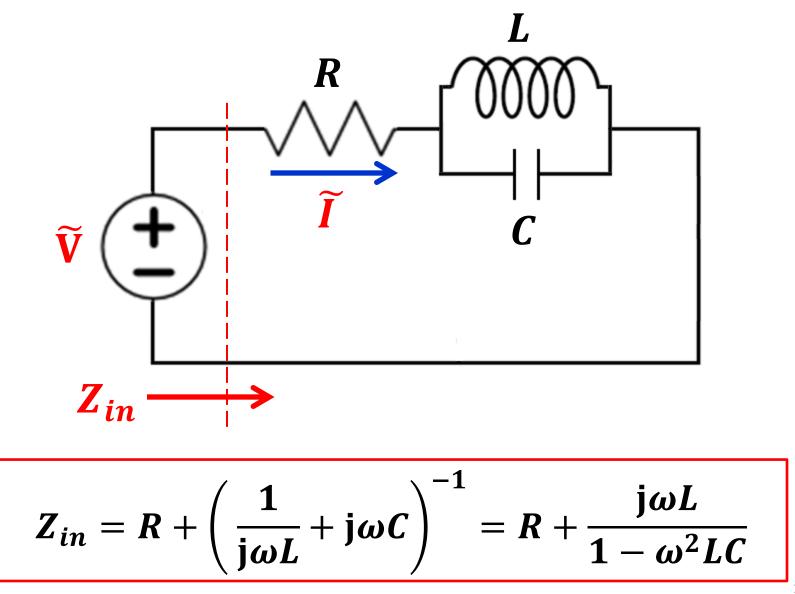


resonance condition ¹²

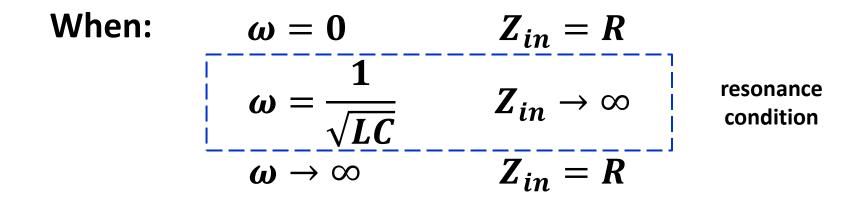
The peak value of the current is maximum at resonance



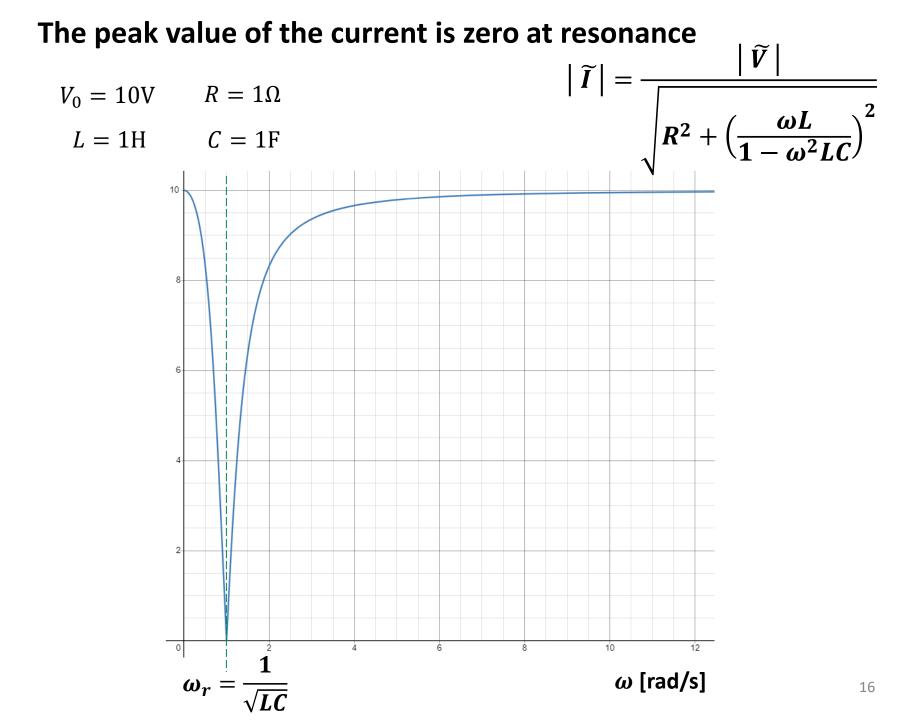
Consider now a circuit with L and C in parallel



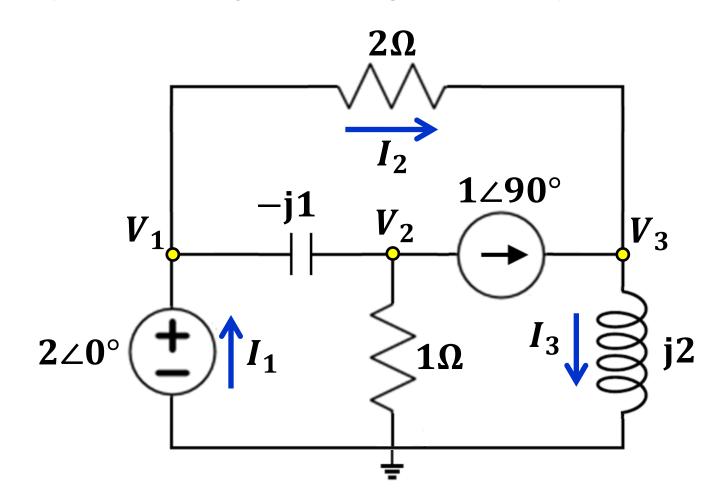
$$Z_{in} = R + \left(\frac{1}{j\omega L} + j\omega C\right)^{-1} = R + \frac{j\omega L}{1 - \omega^2 LC}$$

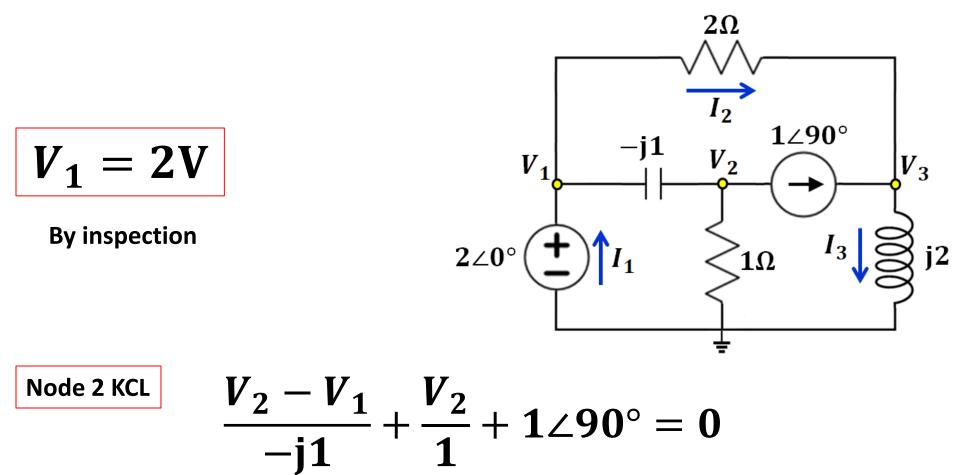


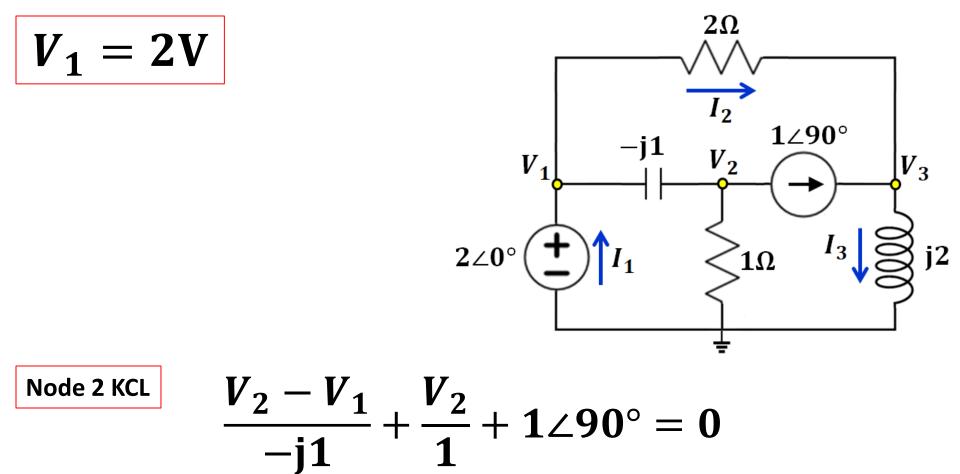
At the resonance condition, the reactance (parallel of *L* and *C*) behaves like an open circuit and no current can flow.



Find phasors V_1 , V_2 , V_3 , I_1 , I_2 , I_3 (We can drop the wavy hat \sim now)

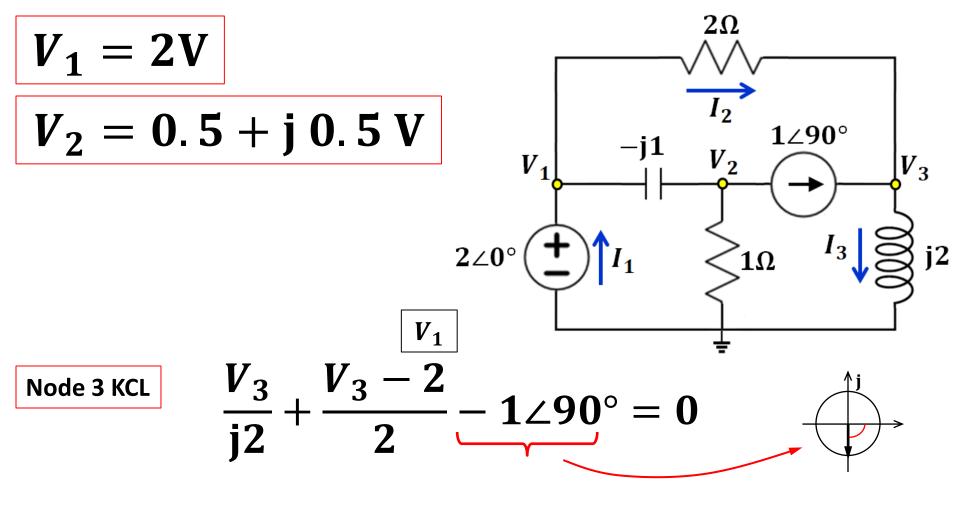


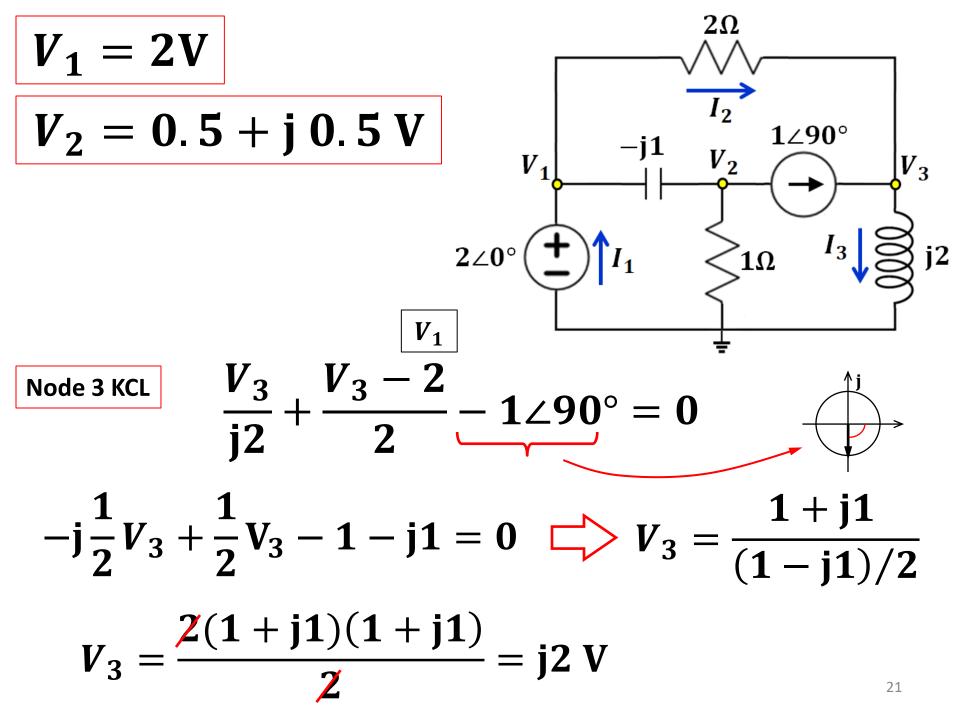


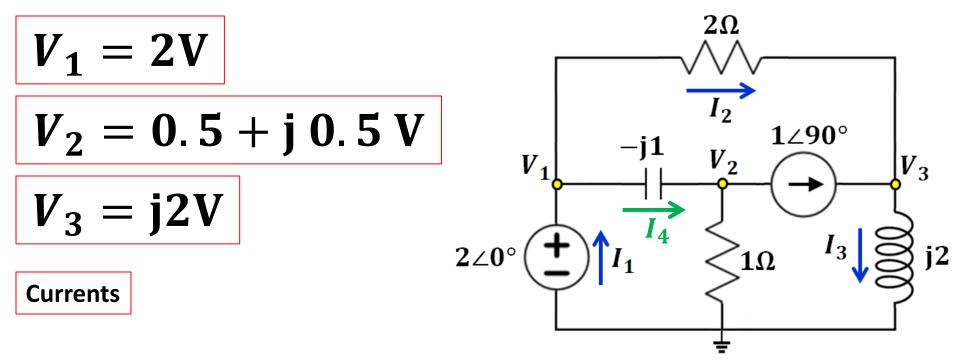


 $jV_2 - 2j + V_2 + j1 = 0$ $V_2(1 + j) = j1$

 $V_2 = \frac{j1}{(1+j)} = \frac{j1(1-j)}{(1+j)(1-j)} = \frac{1+j}{2} = 0.5 + j0.5$







KCL node 1

$$I_4 = I_1 - I_2 = \frac{V_1 - V_2}{-j1} = \frac{2 - (0.5 + j0.5)}{-j1}$$

 $= 0.5 + j1.5 A$

$$V_{1} = 2V$$

$$V_{2} = 0.5 + j 0.5 V$$

$$V_{3} = j2V$$
Currents
$$V_{1} = 2V$$

$$V_{1} = \frac{2\Omega}{I_{2}}$$

$$V_{1} = \frac{-j1}{V_{2}} + \frac{1290^{\circ}}{V_{3}}$$

$$V_{1} = \frac{-j1}{V_{2}} + \frac{1290^{\circ}}{V_{3}} + \frac{1290^{\circ}$$

 $I_4 = I_1 - I_2 = 0.5 + j1.5$ A

$$I_2 = \frac{V_1 - V_3}{2} = \frac{2 - j2}{2} = 1 - j A$$

$$I_1 = I_4 + I_2 = (0.5 + j1.5) + (1 - j)$$

= 1.5 + j0.5 A

$$V_{1} = 2V$$

$$V_{2} = 0.5 + j 0.5 V$$

$$V_{3} = j2V$$
Currents
$$I_{1} = 1.5 + j0.5 A$$

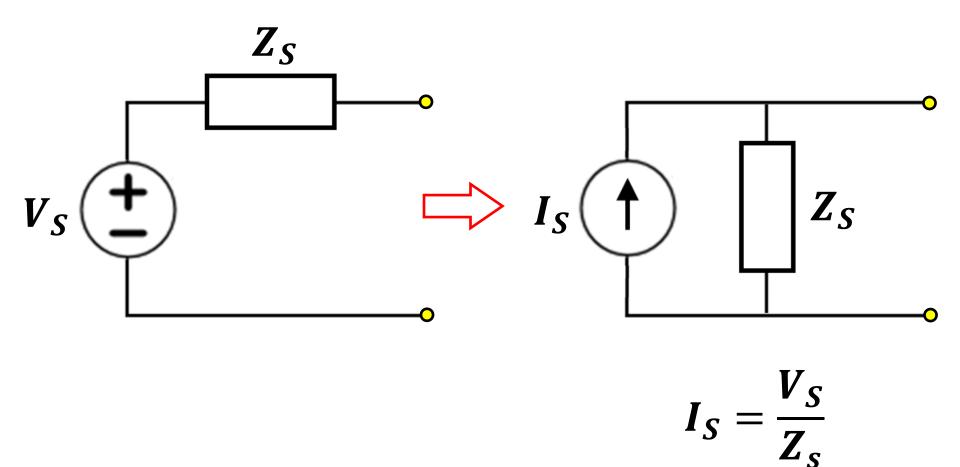
$$I_{2} = 1 - j A$$
KCL at Node 3
$$I_{3} - I_{2} - 1 \angle 90^{\circ} = 0$$

KCL at Node 3
$$I_3 - I_2 - 1 \angle 90^\circ = 0$$

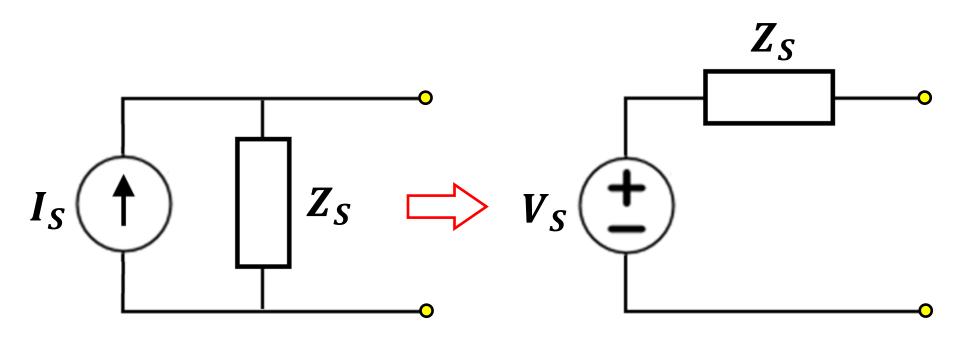
 $I_3 - (1 - j1) - j1 = 0$
Also: $I_3 = V_3/j2 = j2/j2 = 1 \longrightarrow I_3 = 1 \text{ A}$

Source Transformations

The approach we used before works for phasors, too.



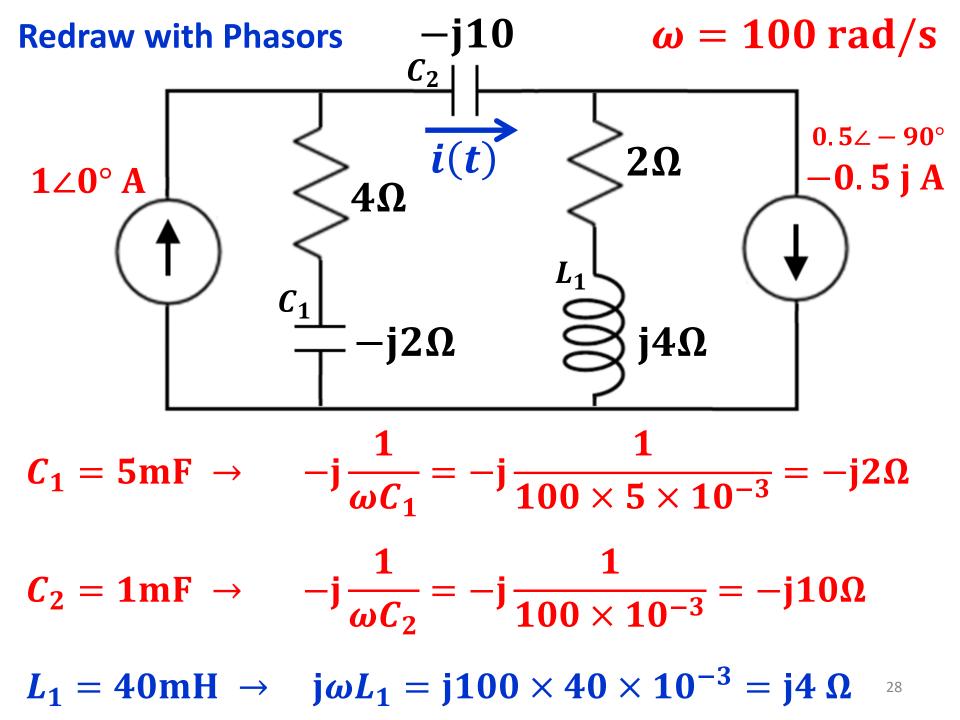
Source Transformations

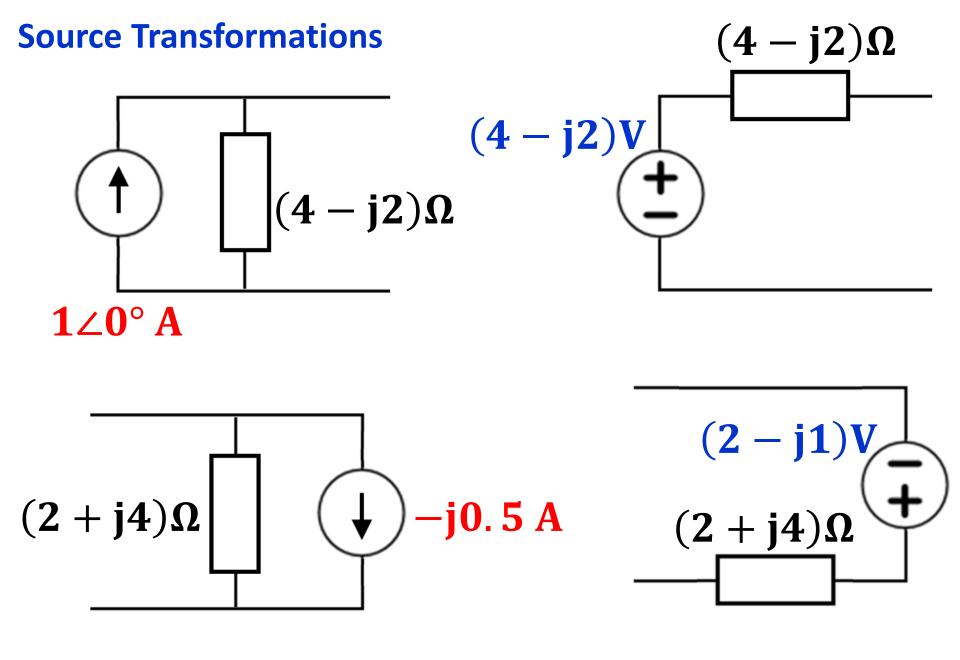


 $V_S = I_S Z_s$

Example 1mF i(t)2Ω 4Ω $i_2(t)$ $i_1(t)$ **40mH** 5mF

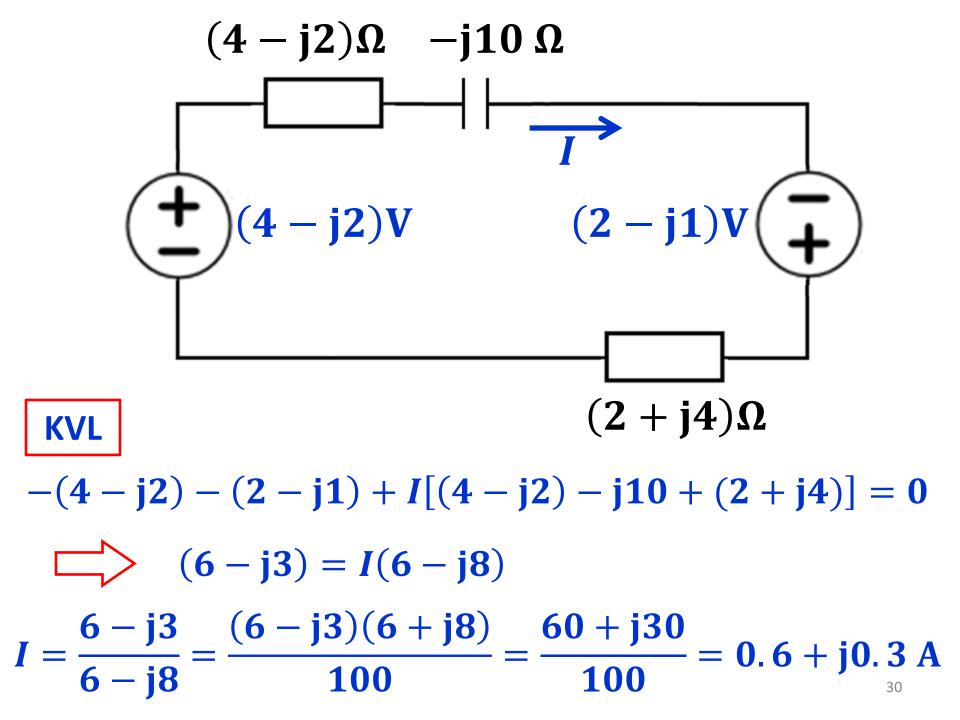
 $i_1(t) = 1 \cos(100t) A$ $i_2(t) = 0.5 \cos(100t - 90^\circ) A$ Find i(t)

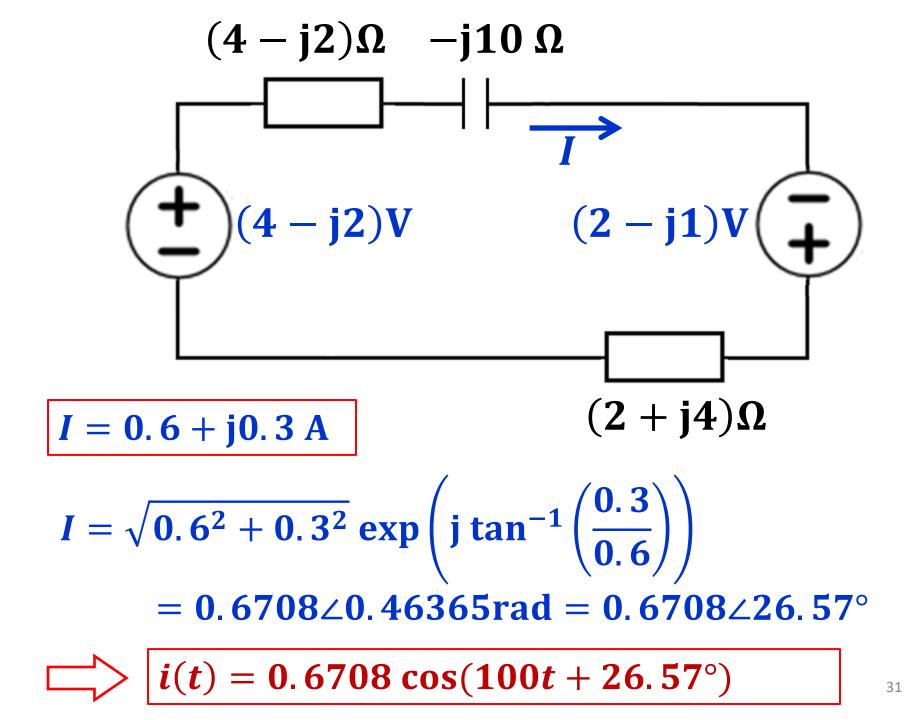




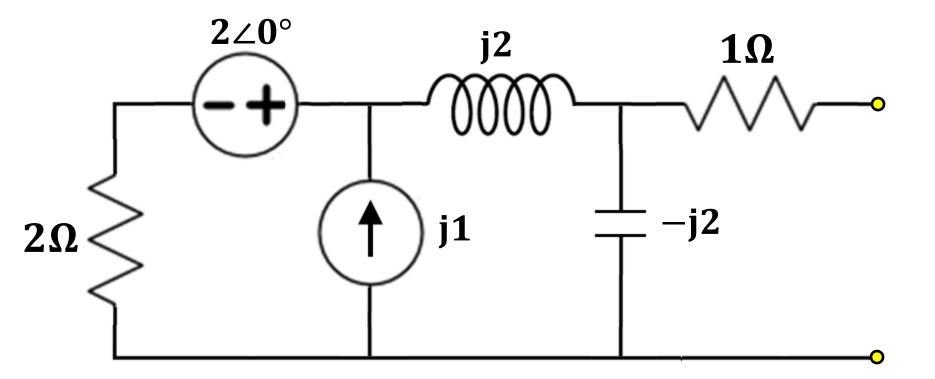
 $V_T = -j0.5(2 + j4) = (2 - j1) V$

29





Find the Thevenin equivalent circuit



Equivalent impedance j2 1Ω -j2

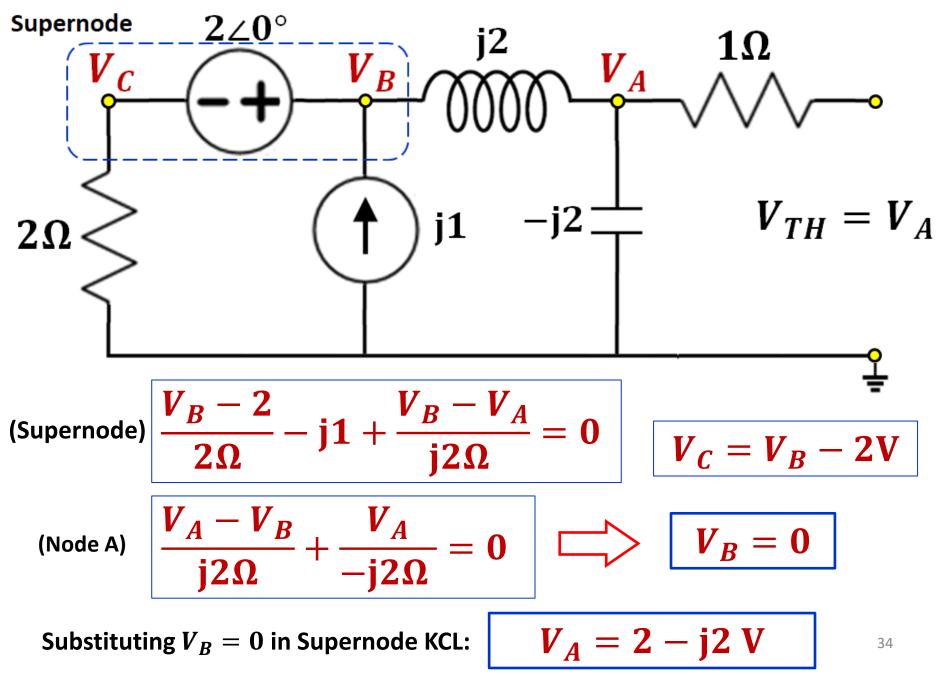
 $Z_{eq} = 1\Omega + (2\Omega + j2\Omega)//(-j2\Omega)$

2Ω

$$Z_{eq} = 1 + \left[\frac{1}{(2+j2)} + \frac{1}{(-j2)}\right]^{-1} = 1 + \frac{(2+j2)(-j2)}{2+j2-j2}$$
$$Z_{eq} = 1 + \frac{4-j4}{2} = 3 - j2 \Omega$$

 Z_{eq}

Find open circuit voltage V_{TH}



Thevenin equivalent circuit

