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Lectures 21 — Summary

Learning Objectives
1. Solution of circuit problems with phasors
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EXAMPLES

Resonance in RLC circuits

Let’s take this opportunity also to retrace
the steps leading to phasors, for review.



Time-differential equations for time harmonic signals
can be transformed into algebraic equations for phasors.
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In the previous lecture we found that this circuit is
described by a second order differential equation
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Time-differential equations for time harmonic signals
can be transformed into algebraic equations for phasors.
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The equation is easily solved
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to obtain the unknowns I, and 0,

The time-dependent solution is obtained from a
backward phasor transformation (anti-transform)

i(t) = Retpexp(jO)exp(jwt)}
= Iycos(wt + 0;)



The phasor formalism has provided a convenient way to solve
time-harmonic problems in steady state, without differential
equations (which are only needed for transients).

The exponential representation of phasors allows immediate
separation of frequency and phase information.
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The simple RLC circuit example with elements in series
illustrates clearly the main properties of an impedance

 The resistance is not function of w

* The inductive component is proportional to w
* The capacitive component is inversely proportional to w

Inductive components are positive

Capacitive components are negative

In series connection, inductive and capacitive
components simply add up.
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Resonance

At a certain frequency w, the magnitudes of
the two reactive terms are equal, so they
cancel out (together, they behave like a short
circuit)
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— The impedance becomes purely resistive.
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The peak value of the current is maximum at resonance

Example: ‘ T‘ e ‘ V‘
Vo =10V R =10 \/R2+(wL—iC)2
w
O Glradsl

13




Consider now a circuit with L and C in parallel
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jolL 1 — w2LC
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At the resonance condition, the reactance (parallel of
L and C) behaves like an open circuit and no current
can flow.



The peak value of the current is zero at resonance
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Find phasors V4, V,, V3, 14,15, 15
(We can drop the wavy hat " now)
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V1:2V

By inspection

Node 2 KCL
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Node 2 KCL VZ — Vl VZ
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V1=2V

V,=0.5+j0.5V

Node 3 KCL Vs V3 —2
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V1=2V

V,=0.5+j0.5V

Node 3 KCL Vs V3 —2
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V1=2V

V,=0.5+j0.5V

Currents

KCL node 1
A

r V=V, 2-—1(0.5+j0.5)

=0.5+j1.5A
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V1=2V

V,=0.5+j0.5V

Currents

Vi—Vs 2-—j2

I, =
2 2 2

=1-jA

=1.5+j0.5A
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Vi=2V A
—

V;=05+j0.5V |

Ve =i2V -

’ ] 220 t Tll

Currents

KCLatNode3 | Jo — I, — 1290° = (0
I; —(1-j1)-j1=0
N\

Also: 13 — V3/]2 :]2/]2 =1 — 13 =1A
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Source Transformations

The approach we used before works for phasors, too.
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O
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Source Transformations

Ig (f) Zs —> Vg Ci
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Example

ITI}F
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T

i{(t) = 1cos(100t) A
i,(t) = 0.5cos(100t —90°) A

Find i(t)
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Source Transformations (4 —j2)Q
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I=0.6+j0.3A (2 +j4)Q

0.3
I =0.62 + 0.32 exp <j tan~1 (—))

—

0.6

= 0.670820.46365rad = 0.6708226.57°

i(t) =0.6708 cos(100t + 26.57°)
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Find the Thevenin equivalent circuit
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Equivalent impedance
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Find open circuit voltage Vg

Supernode 2/0° .

Ve SN Vo) oo Va A0

B o e o/ meﬁ“ —/\V\—
20 ]]_ —]2 _ VTH = VA

(supernode)| B~ i1 VB~ Va _ 4
upernode — —
20 ! 20 Ve=Vg—2V
Va—Vp V4
(Node A) + =0 > | Ve =20
20 —j20 z

Substituting Vg = 0 in Supernode KCL: VA = 2 — jZ V 34




Thevenin equivalent circuit

2.0° .
Vs J V, 1Q
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