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Lecture 22 — Summary

Learning Objectives
1. Introduction to semiconductor diodes
2. Qualitative theory of semiconductors

3. p-n junction



Find the Thevenin equivalent circuit
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Find open circuit voltage Vg

v 2£0° v j2Q ” 10
C B A
=+——0000 35—~/ V\—
i1 —j2Q) —_— Veg = V4

|||- o



Find open circuit voltage Vy
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Find open circuit voltage Vy
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Find open circuit voltage Vy
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Thevenin equivalent circuit
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The Rectifying Diode



|-V Curve of ideal voltage sources




|-V Curve of a short circuit
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-V Curve of ideal current sources
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I-V Curve of an open circuit
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|-V Curve of a resistor
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Ideal voltage-controlled valve
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Voltage-controlled valve with threshold
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Realistic diode valve
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Diode = a two-terminal semiconductor device which
allows current to flow only in one direction

Circuit symbol of a Diode
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Different semiconductor materials have different thresholds
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I is the reverse saturation current and it is very small
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Brief introduction to semiconductors
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Semiconductors are materials with regular periodic crystalline
structure, more commonly the so-called diamond structure for
elements in column IV of the periodic table (e.g., Si, Ge) or pairs of
elements in columns Il and V (or Il and VI) of the table, in the similar
Zinc-blende structure (e.g., GaAs, InP). Another important crystal
structure is Wurtzite (e.g., GaN)

Crystal model for diamond or Zinc-blende Crystal model for Wurtzite
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In these crystals, bonding is very strong and it is due to electron
orbitals in the higher atomic states, which are shared by
neighboring atoms. These states form an “energy band” called
the valence band, which extends to the whole crystal structure.

FEBE

atoms

surface

valence band

Energy




Electrons may exchange places freely in the valence band, but if
all energy/momentum states are occupied, no net current can
flow if an electric field is applied: for any electron with an
allowed momentum (velocity) state, in a full band there is
always another electron with opposite momentum.
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The atomic excited states also form an extended energy band,
called the conduction band. Electrons may “jump” to the
conduction band from the valence band, if they collect
sufficient thermal energy to overcome the energy gap.
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An electron jumping to the conduction band leaves behind an
empty energy/momentum state in the valence band
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Electrons in the conduction band can move if an electric field is
applied. An electron in the valence band may occupy the empty
space leaving an empty space behind. Both mechanisms

contribute to current.
Apply Electric Field
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A pure semiconductor is called intrinsic. There are always as
many electrons in the conduction band as holes in the valence

band. Concentrations of mobile carriers are low and possible
currents are quite small.

V 900090000000 000060

empty state

R

X
Real space

31



We can modify artificially the concentrations and the relative
quantities of electrons and holes by introducing special atomic

impurities, called dopants (extrinsic semiconductor)

substitutional
dopant

Interstitial dopant
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A donor atomic impurity has an extra electron and it introduces
an energy level just below the bottom of the conduction band.
A small thermal energy is needed for the extra electron to jump
into the conduction band, leaving behind a positive fixed
charge.

A semiconductor with predominantly donor impurities is called
n-type with a large number of free electrons and very few holes.
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An acceptor atomic impurity has one less electron and it
introduces an energy level just above the top of the valence
band. A small thermal energy is needed for a valence band
electron to jump into the acceptor site (which becomes
negatively charged) leaving behind a mobile positive hole.

A semiconductor with predominantly acceptor impurities is
called p-type with a large number free holes and very few
conduction band electrons.
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A p-n junction is obtained when two regions of semiconductor
with different type of dopants are in contact
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The two sides have different electrochemical potential due to
the different doping and equilibrium is reached when a certain
region about the junction is depleted of holes on the p-side and
of electrons on the n-side.
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The fixed charge dipole creates a potential barrier preventing
further movement of electrons and holes across the junction

3 SR

| . oo ©o0o
: 'O 00O O O O O O
Er - - i

o ©

Ec

Region depleted
of mobile charges

p-type n-type

Equilibrium potential barrier — No current flows
p-type n-type

aV,

Y Ec

Space SR ~ Charge-neutral

~ Charge-neutral |
depletion layer

Ey

E, 36



No potential
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No potential
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Ideal diode model for circuit analysis

Typical value for Si diodes is ¢
Ve=0.7V

VD <VF VD =VF

Diode is OFF Diode is ON
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Diode circuit analysis

Diodes are non-linear devices, and we cannot state a
priori whether a diode is ON or OFF. Therefore, we can
start a problem by making an assumption.



Diode circuit analysis

Diodes are non-linear devices, and we cannot state a
priori whether a diode is ON or OFF. Therefore, we can
start a problem by making an assumption.

If we assume that a diode is conducting (ON), the
voltage from anode to cathode is “pinned” to the
threshold voltage V' and we solve the circuit with KVL
and KCL linear equations, by imposing that voltage. If
the result is physical, we accept it.
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Diode circuit analysis

Diodes are non-linear devices, and we cannot state a
priori whether a diode is ON or OFF. Therefore, we can
start a problem by making an assumption.

If we assume that a diode is conducting (ON), the
voltage from anode to cathode is “pinned” to the
threshold voltage V' and we solve the circuit with KVL
and KCL linear equations, by imposing that voltage. If
the result is physical, we accept it.

If instead the assumption has generated unphysical
results, there is a contradiction and we solve the
problem again, imposing that the diode is equivalent
to an open circuit (OFF).




Example 1A — Solve for I

A 1000 g Assume Vp=0.7V
+ Assume that the diode
I is conducting (there must
10V VDXZ D be 0.7V across the diode)

KVL VAB + VBC + VCD + VDA —_ O

D C
1001, + 0.7 — 10 = 0

Ip =9.3V/100Q = 93mA

CHECK: I, > 0 and it flows from Anode to Cathode

Results follow expected physics and there is no
contradiction. OK
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Example 1B - Solve for I,

A 1000 g Assume Vp=0.7V
+ Assume that the diode
I is conducting (there must
0.5V VDXZ D be 0.7V across the diode)

D C KVL VAB + VBC + VCD + VDA —_ O

1001, + 0.7 — 0.5 = 0

I, =(0.5V—0.7V)/100 Q = —2mA

CHECK: I'p < 0 and it flows from Cathode to Anode

Physics is incorrect. Also, DIODE cannot provide power.
There is contradiction.
Conclusion: Diode is OFF and I, = OV
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