ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 23
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 23 - Summary

Learning Objectives

1. Solution of circuits with $p-n$ junction diodes

A p-n junction is obtained when two regions of semiconductor with different type of dopants are in contact

The two sides have different electrochemical potential due to the different doping and equilibrium is reached when a certain region about the junction is depleted of holes on the p-side and of electrons on the n-side.

The fixed charge dipole creates a potential barrier preventing further movement of electrons and holes across the junction

Equilibrium potential barrier - No current flows

Equilibrium potential barrier - No current flows

No potential applied

Forward potential applied

Barrier is lowered - electrons and hole can diffuse across junction

The depletion layer shrinks

Equilibrium potential barrier - No current flow

No potential applied

Barrier is higher - Electrons and holes cannot diffuse across junction

Reverse potential applied

Equilibrium
\approx Charge-neutral

The voltage threshold (in Volts) of the diode is a bit smaller than the energy gap (in electron Volts) of the material used. Silicon has energy gap $E_{g} \approx 1.2 \mathrm{eV}$ and
 $V_{F} \approx 0.6$ to 0.8 V .

surface

Ideal diode model for circuit analysis

Typical value for Si diodes is

$$
V_{F}=0.7 \mathrm{~V}
$$

(ACTUAL

Diode circuit analysis

Diodes are non-linear devices, and we cannot state a priori whether a diode is ON or OFF. Therefore, we can start a problem by making an assumption.

Diode circuit analysis

Diodes are non-linear devices, and we cannot state a priori whether a diode is ON or OFF. Therefore, we can start a problem by making an assumption.

If we assume that a diode is conducting (ON), the voltage from anode to cathode is "pinned" to the threshold voltage V_{F} and we solve the circuit with KVL and KCL linear equations, by imposing that voltage. If the result is physical, we accept it.

Diode circuit analysis

Diodes are non-linear devices, and we cannot state a priori whether a diode is ON or OFF. Therefore, we can start a problem by making an assumption.

If we assume that a diode is conducting (ON), the voltage from anode to cathode is "pinned" to the threshold voltage V_{F} and we solve the circuit with KVL and KCL linear equations, by imposing that voltage. If the result is physical, we accept it.

If instead the assumption has generated unphysical results, there is a contradiction and we solve the problem again, imposing that the diode is equivalent to an open circuit (OFF).

Example 1A - Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

Assume that the diode is conducting (there must be 0.7 V across the diode)

KVL

$$
\begin{gathered}
V_{A B}+V_{B C}+V_{C D}+V_{D A}=0 \\
100 I_{D}+0.7-10=0
\end{gathered}
$$

$$
I_{D}=9.3 \mathrm{~V} / 100 \Omega=93 \mathrm{~mA}
$$

CHECK: $I_{D}>0$ and it flows from Anode to Cathode
Results follow expected physics and there is no contradiction. OK

Example 1B - Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

Assume that the diode is conducting (there must be 0.7 V across the diode)

KVL

$$
V_{A B}+V_{B C}+V_{C D}+V_{D A}=0
$$

$$
100 I_{D}+0.7-0.5=0
$$

$$
I_{D}=(0.5 \mathrm{~V}-0.7 \mathrm{~V}) / 100 \Omega=-2 \mathrm{~mA}
$$

CHECK: $I_{D}<\mathbf{0}$ and it flows from Cathode to Anode
Physics is incorrect. Also, DIODE cannot provide power. There is contradiction.
Conclusion: Diode is OFF and $I_{D}=0 \mathrm{~V}$

Example 2: Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

Example 2: Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

Let's solve with the I-V curve. First, characterize the source.

Example 2: Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

$200 \Omega \quad$ Assume that the diode is conducting

The diode is included in the KVL as a virtual voltage source of 0.7 V .
$I_{s c}=\frac{3}{200}=15 \mathrm{~mA}$
$-3+200 I_{D}+0.7=0 \quad \mathrm{KVL}$

$$
I_{D}=\frac{2.3}{200}=11.5 \mathrm{~mA}
$$

Solution makes sense

$$
V_{o c}=3 \mathrm{~V}
$$

Now reverse the bias

Example 3: Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

Assume that the diode is conducting (there must be 0.7 V across the diode)

$$
\begin{aligned}
& I_{1}=\frac{3-0.7}{200}=\frac{2.3}{200}=11.5 \mathrm{~mA} \\
& I_{2}=\frac{0.7}{50}=14 \mathrm{~mA}
\end{aligned}
$$

Example 3: Solve for I_{D}

Assume $V_{F}=0.7 \mathrm{~V}$

Assume that the diode is conducting (there must be 0.7 V across the diode)

$$
\begin{aligned}
& I_{1}=\frac{3-0.7}{200}=\frac{2.3}{200}=11.5 \mathrm{~mA} \\
& I_{2}=\frac{0.7}{50}=14 \mathrm{~mA}
\end{aligned}
$$

$I_{D}=I_{1}-I_{2}=-2.5 \mathrm{~mA} \rightarrow$ NOT PHYSICAL: diode not conducting

Example 3: Solve for I_{D}

From KCL:

Assume $V_{F}=0.7 \mathrm{~V}$

Assume that the diode is conducting (there must be 0.7 V across the diode)

$$
\begin{aligned}
& I_{1}=\frac{3-0.7}{200}=\frac{2.3}{200}=11.5 \mathrm{~mA} \\
& I_{2}=\frac{0.7}{50}=14 \mathrm{~mA}
\end{aligned}
$$

$I_{D}=I_{1}-I_{2}=-2.5 \mathrm{~mA} \rightarrow$ NOT PHYSICAL: diode not conducting
Therefore: $I_{D}=0$

$$
V_{D}=I_{2} \times 50=0.6 \mathrm{~V} \text { or: }
$$

$$
I_{1}=I_{2}=\frac{3}{250}=12 \mathrm{~mA}
$$

$$
V_{D}=3 \times \frac{50}{250}=0.6 \mathrm{~V}
$$

Analysis with IV curve

200Ω

$I_{S C}=15 m A \rightarrow V$
$V_{o c}=0.6 \mathrm{~V}$

Thevenin $\quad R_{T}=40 \Omega=200 \Omega / / 50 \Omega$

$$
\begin{aligned}
& \left.V_{O C}=V_{T}=3 \frac{50}{200+50}=0.6 \mathrm{~V} \quad \right\rvert\, V_{o c}= \\
& I_{S C}=\frac{3}{200}=\frac{V_{T}}{R_{T}}=\frac{0.6}{40}=0.015 \mathrm{~A}=15 \mathrm{~mA}
\end{aligned}
$$

Diode is OFF

Considering an actual I-V characteristic curve, there is a small current flowing, but it is practically negligible.

Example 4A: Solve for I

Assume both diodes conduct

$$
I_{1}=I_{2}+I
$$

Assume both diodes conduct

$$
I_{1}=I_{2}+I
$$

KVL $\quad-10+100 I_{1}+4+4=0$

$$
I_{1}=\frac{2}{100}=20 \mathrm{~mA} \quad I_{2}=\frac{4}{100}=40 \mathrm{~mA}
$$

But $I_{2}>I_{1} \rightarrow$ diode 2 cannot conduct

$$
I=0
$$

Assume both diodes conduct

$$
I_{1}=I_{2}+I
$$

KVL $\quad-10+100 I_{1}+4+4=0$

$$
I_{1}=\frac{2}{100}=20 \mathrm{~mA} \quad I_{2}=\frac{4}{100}=40 \mathrm{~mA}
$$

But $I_{2}>I_{1} \rightarrow$ diode 2 cannot conduct

$$
I=0
$$

new KVL with diode 2 open circuit
$-10+100 I_{1}+4+100 I_{1}=0$

$$
I_{1}=\frac{6}{200}=30 \mathrm{~mA}_{29}
$$

Only diode 1 conducts. The two resistors drop 3V each.
200Ω

equivalent source

The source voltage has been increased

Assume both diodes conduct

$$
I_{1}=I_{2}+I
$$

KVL $\quad-14+500 I_{1}+4+4=0$

$$
I_{1}=\frac{6}{500}=12 \mathrm{~mA} \quad I_{2}=\frac{4}{500}=8 \mathrm{~mA}<I_{1}
$$

$$
I=I_{1}-I_{2}=4 \mathrm{~mA}
$$

Example 5: Solve for $V_{\text {out }}$

Find $V_{\text {out }}$ when
a) $V_{S}=5 \mathrm{~V}$
b) $V_{S}=-12 \mathrm{~V}$
a) $\quad-5+100 I_{1}+1+100 I=0$
$200 I_{1}=4 \rightarrow \quad I=20 \mathrm{~mA}$

$$
V_{\text {out }}=100 \times 20 \mathrm{~m}+1=3 \mathrm{~V}
$$

Example 5: Solve for $V_{\text {out }}$

Find $V_{\text {out }}$ when
a) $V_{S}=5 \mathrm{~V}$
b) $V_{S}=-12 \mathrm{~V}$
a) $\quad-5+100 I_{1}+1+100 I=0$
$200 I_{1}=4 \rightarrow I=20 \mathrm{~mA}$
$V_{\text {out }}=100 \times 20 \mathrm{~m}+1=3 \mathrm{~V}$
b) $\quad I=0 \mathrm{~A} \quad$ Diode does not conduct (reverse bias)

$$
V_{\text {out }}=-12 \mathrm{~V}
$$

Example 6: Solve for $I_{D 1}$ and $I_{D 2}$

$$
V_{D 1}=V_{D 2}=0.7 \mathrm{~V}
$$

Example 6: Solve for $I_{D 1}$ and $I_{D 2}$

$$
V_{D 1}=V_{D 2}=0.7 \mathrm{~V}
$$

- Assume both diodes are ON
- By inspection:

$$
\begin{aligned}
& \mathrm{V}_{1}=V_{D 1}=0.7 \mathrm{~V} \quad \mathrm{~V}_{1}-V_{2}=0.7 \mathrm{~V} \\
& \hline V_{2}=V_{1}-V_{D 2}=0.7-0.7=0 \mathrm{~V}
\end{aligned}
$$

$$
\frac{\mathrm{V}_{1}-15}{5 \mathrm{k}}+I_{D 1}+\frac{\mathrm{V}_{2}-(-10)}{10 \mathrm{k}}=0
$$

$$
\frac{0.7-15}{5 \mathrm{k}}+I_{D 1}+\frac{0+10}{10 \mathrm{k}}=0 \quad I_{D 1}=\frac{9.3}{5 \mathrm{k}}=1.86 \mathrm{~mA}
$$

$$
I=\frac{15-0.7}{5 \mathrm{k}}=2.86 \mathrm{~mA}=I_{D 1}+I_{D 2}
$$

Results present no contradiction, both diodes are ON

Right side of the circuit

Right side of the circuit

