# ECE 205 "Electrical and Electronics Circuits"

# **Spring 2024 – LECTURE 24** MWF – 12:00pm

**Prof. Umberto Ravaioli** 

2062 ECE Building

# Lecture 24 – Summary

- **Learning Objectives**
- 1. More problems on diodes
- 2. Introduction to the bipolar junction transistor (BJT)
- 3. Modes of operations of a BJT
- 4. Amplification
- 5. Solution approaches for BJT circuits



 $-10 + 100I_1 + 4 + 100I_1 = 0$ 

$$I_1 = \frac{6}{200} = 30 \text{mA}_3$$





### The source voltage has been increased



#### Assume both diodes conduct

$$I_1 = I_2 + I$$

$$-14 + 500I_1 + 4 + 4 = 0$$
$$I_1 = \frac{6}{500} = 12\text{mA}$$
$$I_2 = \frac{4}{500} = 8\text{mA} < I_1$$

$$I = I_1 - I_2 = 4 \text{ mA}$$

#### Assumption is valid – No contradiction



Example 5: Solve for *V*<sub>out</sub>

Find 
$$V_{out}$$
 when  
a)  $V_S = 5V$   
b)  $V_S = -12V$ 



Example 5: Solve for *V*<sub>out</sub>

Find 
$$V_{out}$$
 when  
a)  $V_S = 5V$   
b)  $V_S = -12V$ 

 $-5 + 100I_1 + 1 + 100 I_1 = 0$   $200I_1 = 4 \rightarrow I_1 = 20$ mA  $V_{out} = 100 \times 20$ m + 1 = 3V



Example 5: Solve for *V*<sub>out</sub>

Find 
$$V_{out}$$
 when  
a)  $V_S = 5V$   
b)  $V_S = -12V$ 

$$-5 + 100I_{1} + 1 + 100I_{1} = 0$$
  

$$200I_{1} = 4 \rightarrow I_{1} = 20mA$$
  

$$V_{out} = 100 \times 20m + 1 = 3V$$

b)

 $I_1 = 0$  A Diode does not conduct (reverse bias)

$$V_{out} = -12V$$

## Example 6: Solve for $I_{D1}$ and $I_{D2}$





## Example 6: Solve for $I_{D1}$ and $I_{D2}$





- Assume both diodes are ON
- By inspection:  $V_1 = V_{D1} = 0.7V$   $V_1 V_2 = 0.7V$

$$V_2 = V_1 - V_{D2} = 0.7 - 0.7 = 0V$$





#### **Results present no contradiction, both diodes are ON**<sup>13</sup>

**Right side of the circuit** 



**Right side of the circuit** 



# More diode problems

# in the extra video posted on Canvas at Module Week 10 Mon 3/25

## (it includes solution of Worksheet 8)

# **Bipolar Junction Transistor**

- We start from the *p-n* junction
- What happens if we create a structure with two *p-n* junctions?







 $V_A < V_C$ 



## **Bipolar Junction Transistor (BJT)**

 $\mathbf{O}$ 

E



## **Bipolar Junction Transistor (BJT)**



*p-n-p* 

## **Bipolar Junction Transistor (BJT)**







## Simple physics explanation – Forward active mode



Electrons are injected from the emitter into the base through a forward biased emitter-base diode Most electrons traverse the base. The base current injects holes which recombine with some electrons, controlling the current flow from emitter to collector.

Electrons reaching the reverse biased junction are swept into the collector by high electron field in the depletion region.

# **Transistor circuit configurations**







#### **Common Emitter**

- Current gain
- Voltage gain

#### **Common Base**

Voltage gain

#### **Common Collector**

• Current gain

## **Common Emitter is the most important configuration**



For a given  $I_B$  (input) we can measure the resulting  $I_C$  and  $V_{CE}$  (output)



#### Example of complete *I-V* curves



## BJT common emitter n-p-n circuit model



 $\beta$  is the common emitter current gain factor (typically, between 5 and 100)

NOTE: The transistor has a small DC current in input and a much larger DC current in output.

However, it DOES NOT produce power. The power is provided by the DC sources which bias the device.

An AC input signal is amplified and a much larger AC signal is obtained at the output (at the cost of DC power).

### States of BJT operation: 1) Cut-off mode



#### **OFF:** $V_{BE} < V_{BE}(ON)$

The base-emitter junction is like a *p*-*n* diode junction. If it is biased below threshold, the base current is negligible and there is no collector current in output. The output voltage  $V_{CE}$  is maximum (equal to the DC voltage applied to the collector).

For silicon transistors, typically  $V_{BE}(ON) \approx 0.6V$  to 0.7V

## States of BJT operation: 2) Forward Active mode



#### **ON:** $V_{BE} = V_{BE}(ON)$ & $V_{CE} > V_{CE}(sat)$

The base-emitter junction conducts, with input current  $I_B$ . The output voltage  $V_{CE}$  is less than the DC bias voltage on the collector.

As long as  $V_{CE}$  is larger than a minimum "saturation" value  $V_{CE}(\text{sat})$ , the transistor is in forward active mode, with collector current  $\beta I_B$  proportional to the base current.

For silicon transistors, typically  $V_{CE}(sat) \approx 0.2V$ 

## States of BJT operation: 3) Saturation mode



#### **ON:** $V_{BE} = V_{BE}(ON)$ **&** $V_{CE} = V_{CE}(sat)$

When the base current  $I_B$  exceeds a certain value, the voltage  $V_{CE}$  reaches the minimum saturation value  $V_{CE}$ (sat).

The collector current saturates and can no longer follow the base current.

### When the transistor is ON



$$V_{BE} = V_{BE}(ON) \approx 0.6 \text{ to } 0.7 \text{V}$$

$$I_B > 0 \qquad I_C > 0 \qquad I_E > 0$$

$$I_E = I_B + I_C$$

 $I_C = \beta I_B$  Forward active mode

 $I_{\mathcal{C}} = I_{\mathcal{C}}(\text{sat})$  Saturation mode  $[V_{\mathcal{C}\mathcal{E}} = V_{\mathcal{C}\mathcal{E}}(\text{sat}) \approx 0.2V]$ 

## When the transistor is ON



$$I_{B}$$

$$B \circ + V_{CE}$$

$$V_{BE}$$

$$- V_{CE}$$

$$V_{BE}$$

$$- V_{CE}$$

$$V_{E}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$I_C = \alpha I_E$$

$$\beta = \frac{\alpha}{1-\alpha}$$

#### **Current transfer ratio**

Quantifies the % of electrons originating from the emitter which are able to reach the collector

## **BJT solution strategy (Summary)**

### **STEP 1 – Check if the BJT is ON**

The voltage applied in input must turn on the *p*-*n* junction (diode) between base and emitter so that  $V_{BE} = V_{BE}(on)$   $I_B \neq 0$ 

If BJT is OFF  $\rightarrow$  STOP here. If BJT is ON  $\rightarrow$  PROCEED to STEP 2

**STEP 2 – Assume that the BJT is in Forward Active state** 

$$V_{BE} = V_{BE}(on) \qquad I_C = \beta I_B$$

If circuit analysis shows that  $V_{CE} > V_{CE}(sat)$  the assumption is verified.

If assumption is verified  $\rightarrow$  STOP here. If not  $\rightarrow$  PROCEED to STEP 3

#### **STEP 3 – Select Saturation state**

Set

If the result from circuit analysis at STEP 2 is that  $V_{CE} < V_{CE}(sat)$  the calculated collector current is excessive.

$$V_{CE} = V_{CE}(\text{sat})$$
 and calculate the corresponding  $I_C = I_C(\text{sat})$ 

then

# **STEP 1 – Check if the BJT is ON**

The voltage applied in input must turn on the *p-n* junction (diode) between base and emitter so that

$$V_{BE} = V_{BE}(\mathbf{on})$$

$$I_B \neq 0$$

If BJT is OFF  $\rightarrow$  STOP here. If BJT is ON  $\rightarrow$  PROCEED to STEP 2

### **BJT solution strategy**

## **STEP 2 – Assume BJT is in Forward Active state**

$$V_{BE} = V_{BE}(\mathbf{on})$$

$$I_{C} = \beta I_{B}$$

If circuit analysis shows that assumption is verified.

$$V_{CE} > V_{CE}(sat)$$
 the

If assumption is verified  $\rightarrow$  STOP here. If not  $\rightarrow$  PROCEED to STEP 3

# **STEP 3 – Select Saturation state**

If the result from circuit analysis at STEP 2 is that

$$V_{CE} < V_{CE}(sat)$$

then the calculated collector current is excessive.

Set 
$$V_{CE} = V_{CE}(sat)$$

and calculate the corresponding

$$I_C = I_C(sat)$$

