ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 24
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 24 - Summary

Learning Objectives

1. More problems on diodes
2. Introduction to the bipolar junction transistor (BJT)
3. Modes of operations of a BJT
4. Amplification
5. Solution approaches for BJT circuits

Example 4A: Solve for I

Assume both diodes conduct

$$
I_{1}=I_{2}+I
$$

KVL $\quad-10+100 I_{1}+4+4=0$

$$
I_{1}=\frac{2}{100}=20 \mathrm{~mA} \quad I_{2}=\frac{4}{100}=40 \mathrm{~mA}
$$

But $I_{2}>I_{1} \rightarrow$ diode 2 cannot conduct

$$
I=0
$$

new KVL with diode 2 open circuit
$-10+100 I_{1}+4+100 I_{1}=0$

$$
I_{1}=\frac{6}{200}=30 \mathrm{~mA}_{3}
$$

Only diode 1 conducts. The two resistors drop 3V each.
200Ω

equivalent source

The source voltage has been increased

Assume both diodes conduct

$$
I_{1}=I_{2}+I
$$

KVL $\quad-14+500 I_{1}+4+4=0$

$$
I_{1}=\frac{6}{500}=12 \mathrm{~mA} \quad I_{2}=\frac{4}{500}=8 \mathrm{~mA}<I_{1}
$$

$$
I=I_{1}-I_{2}=4 \mathrm{~mA}
$$

Assumption is valid - No contradiction

Example 5: Solve for $\boldsymbol{V}_{\text {out }}$

Find $V_{\text {out }}$ when
a) $V_{S}=5 \mathrm{~V}$
b) $V_{S}=-12 \mathrm{~V}$

Example 5: Solve for $\boldsymbol{V}_{\text {out }}$

Find $V_{\text {out }}$ when
a) $V_{S}=5 \mathrm{~V}$
b) $V_{S}=-12 \mathrm{~V}$
a) $\quad-5+100 I_{1}+1+100 I_{1}=0$
$200 I_{1}=4 \rightarrow \quad I_{1}=20 \mathrm{~mA}$

$$
V_{\text {out }}=100 \times 20 \mathrm{~m}+1=3 \mathrm{~V}
$$

Example 5: Solve for $V_{\text {out }}$

Find $V_{\text {out }}$ when
a) $V_{S}=5 \mathrm{~V}$
b) $V_{S}=-12 \mathrm{~V}$
a) $\quad-5+100 I_{1}+1+100 I_{1}=0$

$$
200 I_{1}=4 \rightarrow I_{1}=20 \mathrm{~mA}
$$

$$
V_{\text {out }}=100 \times 20 \mathrm{~m}+1=3 \mathrm{~V}
$$

b) $\quad I_{1}=0 \mathrm{~A} \quad$ Diode does not conduct (reverse bias)

$$
V_{\text {out }}=-12 \mathrm{~V}
$$

Example 6: Solve for $I_{D 1}$ and $I_{D 2}$

$V_{D 1}=V_{D 2}=0.7 \mathrm{~V}$

Example 6: Solve for $I_{D 1}$ and $I_{D 2}$

$$
V_{D 1}=V_{D 2}=0.7 \mathrm{~V}
$$

- Assume both diodes are ON
- By inspection:

$$
\begin{aligned}
& \frac{V_{1}=V_{D 1}=0.7 \mathrm{~V}}{V_{1}-V_{2}=0.7 \mathrm{~V}} \\
& \hline V_{2}=V_{1}-V_{D 2}=0.7-0.7=0 \mathrm{~V}
\end{aligned}
$$

$$
\frac{\mathrm{V}_{1}-15}{5 \mathrm{k}}+I_{D 1}+\frac{\mathrm{V}_{2}-(-10)}{10 \mathrm{k}}=0
$$

0.7-15

5k
$\frac{0+10}{10 k}=0$
$I_{D 1}=\frac{9.3}{5 \mathrm{k}}=1.86 \mathrm{~mA}$

$$
I=\frac{15-0.7}{5 \mathrm{k}}=2.86 \mathrm{~mA}=I_{D 1}+I_{D 2}
$$

Results present no contradiction, both diodes are ON

Right side of the circuit

Right side of the circuit

More diode problems

in the extra video posted on Canvas at

Module Week 10

Mon 3/25
(it includes solution of Worksheet 8)

Bipolar Junction Transistor

- We start from the $p-n$ junction
- What happens if we create a structure with two $p-n$ junctions?

Equilibrium
\approx Charge-neutral

Bipolar Junction Transistor (BJT) p-n-p

Bipolar Junction Transistor (BJT)
 $n-p-n$

Bipolar Junction Transistor (BJT)
 $p-n-p$

Simple physics explanation - Forward active mode

Electrons are injected from the emitter into the base through a forward biased emitter-base diode

Most electrons traverse the base. The base current injects holes which recombine with some electrons, controlling the current flow from emitter to collector.

Electrons reaching the reverse biased junction are swept into the collector by high electron field in the depletion region.

Transistor circuit configurations

Common Emitter

- Current gain
- Voltage gain

Common Base

- Voltage gain

Common Collector

- Current gain

Common Emitter is the most important configuration

For a given I_{B} (input) we can measure the resulting I_{C} and $V_{C E}$ (output)

Example of complete $I-V$ curves

BJT common emitter n-p-n circuit model

β is the common emitter current gain factor (typically, between 5 and 100)

NOTE: The transistor has a small DC current in input and a much larger DC current in output.

However, it DOES NOT produce power. The power is provided by the DC sources which bias the device.

An AC input signal is amplified and a much larger AC signal is obtained at the output (at the cost of DC power).

States of BJT operation: 1) Cut-off mode

OFF: $V_{B E}<V_{B E}$ (ON)
The base-emitter junction is like a $p-n$ diode junction. If it is biased below threshold, the base current is negligible and there is no collector current in output. The output voltage $V_{C E}$ is maximum (equal to the DC voltage applied to the collector).

For silicon transistors, typically $V_{B E}(0 N) \approx 0.6 \mathrm{~V}$ to 0.7 V

States of BJT operation: 2) Forward Active mode

ON: $V_{B E}=V_{B E}(\mathbf{O N}) \& V_{C E}>V_{C E}$ (sat)
The base-emitter junction conducts, with input current I_{B}. The output voltage $V_{C E}$ is less than the DC bias voltage on the collector.

As long as $V_{C E}$ is larger than a minimum "saturation" value $V_{C E}$ (sat), the transistor is in forward active mode, with collector current βI_{B} proportional to the base current.

For silicon transistors, typically $V_{C E}($ sat $) \approx 0.2 \mathrm{~V}$

States of BJT operation: 3) Saturation mode

ON: $V_{B E}=V_{B E}(0 N) \quad \& \quad V_{C E}=V_{C E}($ sat $)$
When the base current I_{B} exceeds a certain value, the voltage $V_{C E}$ reaches the minimum saturation value $V_{C E}($ sat $)$.

The collector current saturates and can no longer follow the base current.

When the transistor is ON

$$
\begin{aligned}
& \xrightarrow[B_{B E}^{(}]{I_{B}} \\
& V_{B E}=V_{B E}(0 N) \approx 0.6 \text { to } 0.7 \mathrm{~V} \\
& \begin{array}{lll}
I_{B}>0 & I_{C}>0 & I_{E}>0
\end{array} \\
& I_{E}=I_{B}+I_{C} \\
& I_{C}=\beta I_{B} \quad \text { Forward active mode } \\
& I_{C}=I_{C}(\text { sat }) \quad \text { Saturation mode } \quad\left[V_{C E}=V_{C E}(\text { sat }) \approx 0.2 \mathrm{~V}\right]
\end{aligned}
$$

When the transistor is ON

In Forward Active mode

$$
\begin{aligned}
& I_{C}=\beta I_{B} \\
& \text { кСL } \quad I_{E}=I_{B}+I_{C} \\
& I_{E}=(\beta+1) I_{B} \\
& I_{E}=\frac{I_{C}}{\beta}+I_{C}=\frac{\beta+1}{\beta} I_{C}=\frac{1}{\alpha} I_{C} \\
& \alpha=\frac{\beta}{\beta+1} \\
& I_{C}=\alpha I_{E} \\
& \beta=\frac{\alpha}{1-\alpha}
\end{aligned}
$$

Current transfer ratio
Quantifies the \% of electrons originating from the emitter which are able to reach the collector

BJT solution strategy (Summary)

STEP 1 - Check if the BJT is ON

The voltage applied in input must turn on the p - n junction (diode) between base and emitter so that

$$
V_{B E}=V_{B E}(\mathrm{on}) \quad I_{B} \neq 0
$$

If BJT is OFF \rightarrow STOP here. If BJT is ON \rightarrow PROCEED to STEP 2
STEP 2 - Assume that the BJT is in Forward Active state

$$
V_{B E}=V_{B E}(\text { on }) \quad I_{C}=\beta I_{B}
$$

If circuit analysis shows that $V_{C E}>V_{C E}($ sat $)$ the assumption is verified.
If assumption is verified \rightarrow STOP here. If not \rightarrow PROCEED to STEP 3
STEP 3 - Select Saturation state
If the result from circuit analysis at STEP 2 is that $V_{C E}<V_{C E}(\mathbf{s a t})$ then the calculated collector current is excessive.
Set $\boldsymbol{V}_{\boldsymbol{C E}}=\boldsymbol{V}_{\boldsymbol{C E}}(\mathbf{s a t})$ and calculate the corresponding $\boldsymbol{I}_{\boldsymbol{C}}=\boldsymbol{I}_{\boldsymbol{C}}(\mathbf{s a t})$

BJT solution strategy

STEP 1 - Check if the BJT is ON

The voltage applied in input must turn on the $p-n$ junction (diode) between base and emitter so that

$$
V_{B E}=V_{B E}(\mathbf{o n})
$$

$$
I_{B} \neq 0
$$

If BJT is OFF \rightarrow STOP here. If BJT is ON \rightarrow PROCEED to STEP 2

BJT solution strategy

STEP 2 - Assume BJT is in Forward Active state

$$
V_{B E}=V_{B E}(\text { on })
$$

$$
I_{C}=\beta I_{B}
$$

If circuit analysis shows that $V_{C E}>V_{C E}($ sat $)$ the assumption is verified.

If assumption is verified \rightarrow STOP here. If not \rightarrow PROCEED to STEP 3

BJT solution strategy

STEP 3 - Select Saturation state

If the result from circuit analysis at STEP 2 is that

$$
V_{C E}<V_{C E}(\text { sat })
$$

then the calculated collector current is excessive.

Set $\quad V_{C E}=V_{C E}(\mathbf{s a t})$

and calculate the corresponding

$$
I_{C}=I_{C}(\mathrm{sat})
$$

$V_{B E} \geq V_{B E}(\mathbf{O N}) ?$

NO

YES

BJT OFF

