ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 25 MWF – 12:00pm

Prof. Umberto Ravaioli

2062 ECE Building

Lecture 25 – Summary

- **Learning Objectives**
- 1. Solution approaches for BJT circuits

Common Emitter is the most important configuration

For a given I_B (input) we can measure the resulting I_C and V_{CE} (output)

Example of complete *I-V* curves

BJT common emitter n-p-n circuit model

This equivalent circuit model describes the BJT when it behaves as an amplifier (Forward-Active mode)

 β is the common emitter current gain factor (typically, between 5 and 100) Another name used by manufacturers is: h_{FE}

BJT common emitter n-p-n circuit model

NOTE: The transistor has a small DC base current in input and a much larger DC collector current in output.

However, it DOES NOT produce power. The power is provided by the DC generators which bias the device.

An <u>AC input signal</u> can be amplified and a much larger AC signal is obtained at the output (at the cost of DC power).

There are 3 regimes of operation

CUT-OFF MODE FORWARD-ACTIVE MODE SATURATION MODE

States of BJT operation: 1) Cut-off mode

OFF: $V_{BE} < V_{BE}(\mathbf{ON})$

The base-emitter junction is like a *p*-*n* diode junction. If it is biased below threshold, the base current is negligible and there is no collector current in output. The output voltage V_{CE} is maximum (equal to the DC voltage applied to the collector).

For silicon transistors, typically $V_{BE}(ON) \approx 0.6V$ to 0.7V

States of BJT operation: 2) Forward Active mode

ON: $V_{BE} = V_{BE}(ON)$ & $V_{CE} > V_{CE}(sat)$

The base-emitter junction conducts, with input current I_B . The output voltage V_{CE} is less than the DC bias voltage on the collector.

As long as V_{CE} is larger than a minimum "saturation" value $V_{CE}(\text{sat})$, the transistor is in forward active mode, with collector current βI_B proportional to the base current.

For silicon transistors, typically $V_{CE}(sat) \approx 0.2V$

States of BJT operation: 3) Saturation mode

ON: $V_{BE} = V_{BE}(ON)$ & $V_{CE} = V_{CE}(sat)$

When the base current I_B reaches a sufficiently high value, the voltage V_{CE} reaches the minimum saturation value $V_{CE}(\text{sat})$. The collector current saturates and can no longer follow the base current. This starts happening at the "onset of saturation" $I_B = I_B(\text{onsat})$, corresponding to the condition under which $V_{CE} = V_{CE}(\text{sat})$ is first reached, when base current is increased.

 $I_C = I_C(\text{sat}) = \text{constant for } I_B \ge I_B(\text{onsat})$

THIS IS VALID WHEN THE EMITTER TERMINAL IS GROUNDED

IMPORTANT FOR PROBLEM SOLUTION

At the <u>onset of saturation</u> point, the Forward-Active and the Saturation conditions coincide.

So, as the base current increases, this is the last point at which the amplification relation

$$I_C = \beta I_B = \beta I_B$$
(onsat)

is still formally valid, after which amplification control is lost by the BJT and the collector current stops growing.

When the transistor is ON

$$V_{BE} = V_{BE}(\text{ON}) \approx 0.6 \text{ to } 0.7 \text{V}$$

$$I_B > 0 \qquad I_C > 0 \qquad I_E > 0$$

$$I_E = I_B + I_C$$

$$\begin{cases} I_C = \beta \ I_B \qquad \text{Forward active mode} \\ I_C = I_C(\text{sat}) \quad \text{Saturation mode} \quad [V_{CE} = V_{CE}(\text{sat}) \approx 0.2V] \\ \text{Typically} \qquad 12 \end{cases}$$

When the transistor is ON

In Forward Active mode

$$I_{C} = \beta I_{B}$$

KCL
$$I_{E} = I_{B} + I_{C}$$
$$I_{E} = (\beta + 1)I_{B}$$

$$I_E = \frac{I_C}{\beta} + I_C = \frac{\beta + 1}{\beta} I_C = \frac{1}{\alpha} I_C$$

I_{B}	
$B \circ {V_{BE}}$	V_{CE}

$$\alpha = \frac{\beta}{\beta + 1} = \frac{I_C}{I_E} \qquad \qquad I_C = \alpha I_E \qquad \qquad \beta = \frac{\alpha}{1 - \alpha}$$

Current transfer ratio

Quantifies the % of electrons (holes in *p*-*n*-*p* BJT) originating from the emitter which are able to reach the collector

Common Emitter I-V curves Example

One curve for each value of *I*_B

BJT as amplifier or as logic switch

Q bias point – Amplifier A and B points – Logic Inverter

BJT Circuit Representations

Conventional *V*_{*CE*}(**sat**)

- Manufacturers provide device specs, with an "average" measured value for $V_{CE}(sat)$.
- Simple models assume that for any base current, this specific average $V_{CE}(sat)$ value is established in all practical application.
- Of course, this is a model approximation, but usually a very acceptable one.

Simplified I-V curves corresponding to the approximate BJT model

BJT solution strategy – SUMMARY on single slide

STEP 1 – Check if the BJT is ON

The voltage applied in input must turn on the *p-n* junction (diode) between base and emitter so that $V_{BE} = V_{BE}(\text{on}) \mid I_B \neq 0$

If BJT is OFF \rightarrow STOP here. If BJT is ON \rightarrow PROCEED to STEP 2

STEP 2 – Assume that the BJT is in Forward Active state

$$V_{BE} = V_{BE}(on)$$
 $I_C = \beta$

$$I_{C} = \beta I_{B}$$

If circuit analysis shows that $|V_{CE} > V_{CE}(sat)|$ the assumption is verified.

If assumption is verified \rightarrow STOP here. If not \rightarrow PROCEED to STEP 3

STEP 3 – Select Saturation state

Set

If the result from circuit analysis at STEP 2 is that the calculated collector current is excessive.

$$V_{CE} < V_{CE}(sat)$$
 then

 $|V_{CE} = V_{CE}(sat)|$ and calculate the corresponding $|I_{C} = I_{C}(sat)|$

STEP 1 – Check if the BJT is ON

The voltage applied in input must turn on the *p-n* junction (diode) between base and emitter so that

$$V_{BE} = V_{BE}(\mathbf{on})$$

$$I_B \neq 0$$

If BJT is OFF \rightarrow STOP here. If BJT is ON \rightarrow PROCEED to STEP 2

STEP 2 – Assume BJT is in Forward Active state

$$V_{BE} = V_{BE}(\mathbf{on})$$
 $I_C = \beta I_B$

If circuit analysis shows that assumption is verified.

$$V_{CE} > V_{CE}(sat)$$
 the

If assumption is verified \rightarrow STOP here. If not \rightarrow PROCEED to STEP 3

STEP 3 – Select Saturation state

If the result from circuit analysis at STEP 2 is that

$$V_{CE} < V_{CE}(sat)$$

then the calculated collector current is excessive.

Set
$$V_{CE} = V_{CE}(\text{sat})$$

and calculate the corresponding

$$I_{\mathcal{C}} = I_{\mathcal{C}}(\text{sat})$$

The left and right portions of the circuit are only coupled by the amplification factor β which controls the collector current controlled current source in output.

Addition of a resistor between emitter and ground

The emitter resistor R_E introduces also a coupling feedback between left and right, since the potential drop on R_E is shared by the KVL's. In saturation conditions, I_C is not constant, as a consequence. ²⁸

Example 1: Find the BJT mode of operation

Example 1: Find the BJT mode of operation

(a) $V_i = 0.5 V$

BJT is OFF since

 $V_i < V_{BE}(on)$

Cut-off mode

Example 2: Find the BJT mode of operation

$$V_{BE}(on) = 0.7V$$

 $V_{CE}(sat) = 0.2V$
 $\beta = 200$
(*a*) $V_i = 0.5V$
(*b*) $V_i = 3.5V$

$$V_{BE}(\mathbf{on}) = \mathbf{0.7V}$$

 $V_{CE}(\mathbf{sat}) = \mathbf{0.2V}$
 $\boldsymbol{\beta} = \mathbf{200}$

(a) $V_i = 0.5V$

BJT is OFF since

 $V_i < V_{BE}(on)$

Cut-off mode

$$V_{BE}(\mathbf{on}) = \mathbf{0.7V}$$

 $V_{CE}(\mathbf{sat}) = \mathbf{0.2V}$
 $\boldsymbol{\beta} = \mathbf{200}$

(b) $V_i = 3.5V$ BJT is ON since $V_i > V_{BE}(on)$ Assume forward active mode and check the collector behavior

KVL
$$-3.5 + I_B \times 20 k\Omega + 0.7 = 0$$

$$V_{CC} = 5V$$

$$R_{C} = 2.5 \text{ k}\Omega$$

$$I_{C}$$

$$R_{B} = 20 \text{ k}\Omega$$

$$V_{i} \circ \downarrow \downarrow I_{B}$$

$$V_{BE}$$

$$I_{E}$$

$$V_{CE}$$

$$I_{E}$$

$$I_B = 0.14$$
 mA

$$I_C = \beta I_B = 200 \times 0.14 = 28$$
mA

$$V_{BE}(on) = 0.7V$$

 $V_{CE}(sat) = 0.2V$
 $\beta = 200$

KVL

(b) $V_i = 3.5V$ BJT is ON since $V_i > V_{BE}(on)$ Assume forward active mode and check the collector behavior

 $I_C = \beta I_B = 200 \times 0.14 = 28$ mA

 $-3.5 + I_B \times 20 k\Omega + 0.7 = 0$

$$I_B = 0.14$$
mA

 $\frac{\text{Contradiction}}{65V} < 0.2V$

$$V_{CE} = V_{CC} - I_C R_C = 5 - 28 \text{m} \times 2.5 \text{k} = -65 \text{V} < 0.2 \text{V}$$

$$V_{BE}(on) = 0.7V$$

 $V_{CE}(sat) = 0.2V$
 $\beta = 200$
(b) $V_i = 3.5V$

BJT is ON since
$$V_i > V_{BE}(on)$$

Assume forward active mode and check the collector behavior

KVL $-3.5 + I_B \times 20 k\Omega + 0.7 = 0$

 $I_C = \beta I_B = 200 \times 0.14 = 28$ mA

$$V_{CC} = 5V$$

$$R_{C} = 2.5 \text{ k}\Omega$$

$$I_{C}$$

$$R_{B} = 20 \text{ k}\Omega$$

$$V_{i} \circ \bigvee I_{B}$$

$$V_{BE}$$

$$I_{E}$$

$$I_{E}$$

$$I_B = 0.14 \,\mathrm{mA}$$

Contradiction

 $V_{CE} = V_{CC} - I_C R_C = 5 - 28 \text{m} \times 2.5 \text{k} = -65 \text{V} < 0.2 \text{V}$ $V_{CE} = V_{CE}(\text{sat}) = 0.2 \text{V}$ Saturation mode $V_{BE}(on) = 0.7V$ $V_{CE}(sat) = 0.2V$ $\beta = 200$ (b) $V_i = 3.5V$ BJT is ON since $V_i > V_{BE}(on)$ Let's find the collector current at onset of saturation

$$I_B = 0.14 \text{mA}$$
 $I_C = \beta I_B = 28 \text{mA}$

Under Forward-Active assumption

$$V_{BE}(\mathbf{on}) = \mathbf{0}.7V$$

$$V_{CE}(\mathbf{sat}) = \mathbf{0}.2V$$

$$\beta = 200$$

$$(b) V_i = 3.5V$$
BJT is ON since $V_i > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation
$$I_B = \mathbf{0}.14\text{mA}$$

$$I_C = \beta I_B = 28\text{mA}$$

$$V_{CC} = 5V$$

$$R_C = 2.5 \text{ k}\Omega$$

$$V_i \sim V_{CE}$$

$$I_B = V_{BE}$$

$$V_i \sim V_{CE}$$

$$I_E$$

KVL
$$5 + (-I_c(sat) \times 2.5k\Omega) - V_{CE}(sat) = 0$$

$$V_{BE}(\mathbf{on}) = \mathbf{0}.7\mathbf{V}$$

$$V_{CE}(\mathbf{sat}) = \mathbf{0}.2\mathbf{V}$$

$$\beta = 200$$

$$(b) V_i = 3.5\mathbf{V}$$
BJT is ON since $V_i > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation
$$I_B = \mathbf{0}.14\mathbf{mA}$$

$$I_C = \beta I_B = 28\mathbf{mA}$$
KVL $5 + (-I_C(\mathbf{sat}) \times 2.5\mathbf{k}\Omega) - V_{CE}(\mathbf{sat}) = 0$

$$I_C(\mathbf{sat}) = 4.8\mathbf{V}/2.5\mathbf{k}\Omega = 1.92\mathbf{mA} \ll \beta I_B$$

$$V_{BE}(\mathbf{on}) = \mathbf{0}.7\mathbf{V}$$

$$V_{CE}(\mathbf{sat}) = \mathbf{0}.2\mathbf{V}$$

$$\beta = 200$$

$$(b) V_i = 3.5\mathbf{V}$$
BJT is ON since $V_i > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation
$$I_B = \mathbf{0}.14\mathbf{mA} \qquad I_C = \beta I_B = 28\mathbf{mA}$$
KVL $5 + (-I_C(\mathbf{sat}) \times 2.5\mathbf{k}\Omega) - V_{CE}(\mathbf{sat}) = \mathbf{0}$

$$I_C(\mathbf{sat}) = 4.8\mathbf{V}/2.5\mathbf{k}\Omega = 1.92\mathbf{mA} \ll \beta I_B$$

$$V_{CE} = V_{CE}(\mathbf{sat}) = \mathbf{0}.2\mathbf{V} \qquad \text{Saturation mode}$$
42

 V_i (at onset of saturation) = 9.6 μ A × 20 $k\Omega$ + 0.7 = 0.892V

The base current can be increased further, but the collector current remains at the saturation value I_c (sat).

$$V_{BE}(on) = 0.7V$$
$$V_{CE}(sat) = 0.2V$$
$$\beta = 100$$
$$I_E = (\beta + 1)I_B$$

Assume forward active mode

Base-emitter KVL

$$-V_i + I_B R_B + V_{BE} + I_E R_E = 0$$

Previous results for currents are invalid

$$\square V_{CE} = V_{CE}(\text{sat}) = 0.2 \text{ V}$$

Remember

$$I_E = \frac{\beta + 1}{\beta} I_C = 1.01 I_C$$

(valid up to onset of saturation)

$$V = \frac{1}{V_{cc}} = 16V$$

$$I_{c} = \frac{1}{V_{cE}}$$

$$R_{B} = 1 k\Omega$$

$$V_{i} = \frac{1}{I_{B}} + \frac{1}{V_{BE}}$$

$$V_{CE} = \frac{1}{V_{EE}}$$

$$R_{E} = 1 k\Omega$$

V

-10V

 $-10 + I_c(\text{onsat}) \times 3.6\text{k} + 0.2 + 1.01 \times I_c(\text{onsat}) \times 1\text{k} = 0$

Previous results for currents are invalid $V_{cc} = 10V$ $V_{CE} = V_{CE}(sat) = 0.2 V$ = 3.6 kΩ $R_B = 1 \text{ k}\Omega$ Remember V_{CE} $I_E = \frac{\beta + 1}{\beta} I_C = 1.01 I_C$ $V_i = ?$ (valid up to onset of saturation) $R_E = 1 \mathrm{k}\Omega$ KVL **Recalculate collector-emitter KVL** $-V_{CC} + I_C(\text{onsat})R_C + V_{CE}(\text{onsat}) + I_ER_E = 0$

 $-10 + I_{\mathcal{C}}(\text{onsat}) \times 3.6\text{k} + 0.2 + 1.01 \times I_{\mathcal{C}}(\text{onsat}) \times 1\text{k} = 0$

$$I_C(\text{onsat}) = 9.8/4.61 \text{k} = 2.13 \text{ mA}$$

 $I_E(\text{onsat}) = 1.01 I_C = 2.15 \text{ mA}$ At onset of saturation

ATTENTION – Relevant for HW10-PL

AGAIN: The derivations in the previous slide ARE NOT VALID in deeper saturation but only at the onset point where the device transitions from Forward-Active mode to Saturation mode

When the base current is increased beyond onset, the voltage drop in the emitter resistor changes, since

 $I_E = I_B + I_C$

If we assume that the saturation $V_{CE}(\text{sat})$ remains at the value specified by the manufacturer $V_i = 5V \sim 1000$ throughout, in saturation

$$V_{CC} - V_{CE}(\text{sat}) = R_C I_C + R_E I_E$$

This equation has to be solved simultaneously with the base circuit KVL

$$V_i - V_{BE} = R_B I_B + R_E I_E$$

 $V_{cc} = 10V$ = 3.6 kΩ $R_B = 1 \text{ k}\Omega$ V_{CE} KVL

 $-V_i(\text{onsat}) + I_B(\text{onsat})R_B + V_{BE} + I_E(\text{onsat})R_E = 0$

 $V_i(\text{onsat}) = 0.021 \text{m} \times 1\text{k} + 0.7 + 2.15 \text{m} \times 1\text{k}$

 $-V_i(\text{onsat}) + I_B(\text{onsat})R_B + V_{BE} + I_E(\text{onsat})R_E = 0$

 $V_i(\text{onsat}) = 0.021 \text{m} \times 1\text{k} + 0.7 + 2.15 \text{m} \times 1\text{k}$

 $V_i(\text{onsat}) = 2.87 \text{ V}$

At this input voltage on the base resistor, the BJT starts saturating

Resistor on emitter changes the saturation behavior

$$V_{BE}(\text{on}) \le V_B < V_i(\text{onsat}) = 2.87 \text{ V}$$

Forward-Active mode

$$V_B = V_i$$
(onsat) = 2.87 V

Onset of saturation (FA mode equations are still valid)

$$V_B > V_i$$
(onsat) = 2.87 V

"Deeper" saturation (FA mode equations are NOT valid)

In deeper saturation, collector current decreases somewhat

 I_B keeps increasing in deeper saturation

 $V_B > V_i$ (onsat) = 2.87 V

$$I_C < I_C(\text{onsat}) = 2.13 \text{ mA}$$

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

