ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 26
MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 26 - Summary

Learning Objectives

1. More BJT practice
2. Transistor as diode
3. Graphical use of I-V curves

Example 2: Find the BJT mode of operation

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=200
\end{aligned}
$$

[^0]
\[

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{2 0 0}
\end{aligned}
$$
\]

(a) $V_{i}=0.5 \mathrm{~V}$

BJT is OFF since

$$
V_{i}<V_{B E}(\text { on })
$$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{2 0 0}
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

BJT is ON since $V_{i}>V_{B E}$ (on)
Assume forward active mode and check the collector behavior

KVL $-3.5+I_{B} \times 20 \mathrm{k} \Omega+0.7=0$

$$
I_{B}=0.14 \mathrm{~mA}
$$

$I_{C}=\beta I_{B}=200 \times 0.14=28 \mathrm{~mA}$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{2 0 0}
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

BJT is ON since $V_{i}>V_{B E}($ on $)$
Assume forward active mode and check the collector behavior

$$
\begin{array}{lr}
\hline \mathrm{KVL}-3.5+I_{B} \times 20 \mathrm{k} \Omega+0.7=0 & I_{B}=0.14 \mathrm{~mA} \\
I_{C}=\beta I_{B}=200 \times 0.14=28 \mathrm{~mA} & \text { Contradiction } \\
V_{C E}=V_{C C}-I_{C} R_{C}=5-28 \mathrm{~m} \times 2.5 \mathrm{k}=-65 \mathrm{~V}<0.2 \mathrm{~V}
\end{array}
$$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{2 0 0}
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

BJT is ON since $\quad V_{i}>V_{B E}($ on $)$
Assume forward active mode and check the collector behavior

$$
\begin{array}{lc}
\mathrm{KVL}-3.5+I_{B} \times 20 \mathrm{k} \Omega+0.7=0 & I_{B}=0.14 \mathrm{~mA} \\
I_{C}=\beta I_{B}=200 \times 0.14=28 \mathrm{~mA} & \text { Contradiction } \\
V_{C E}=V_{C C}-I_{C} R_{C}=5-28 \mathrm{~m} \times 2.5 \mathrm{k}=-65 \mathrm{~V}<0.2 \mathrm{~V}
\end{array}
$$ $V_{C E}=V_{C E}($ sat $)=0.2 \mathrm{~V} \quad$ Saturation mode

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=200 \\
& \text { (b) } V_{i}=3.5 \mathrm{~V}
\end{aligned}
$$

BJT is $O N$ since $\quad V_{i}>V_{B E}($ on $)$
Let's find the collector current at onset of saturation

$$
I_{B}=0.14 \mathrm{~mA} \quad I_{C}=\beta I_{B}=28 \mathrm{~mA}
$$

Under Forward-Active assumption we had

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{2 0 0}
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

BJT is ON since $V_{i}>V_{B E}$ (on)
Let's find the collector current at onset of saturation

$$
I_{B}=0.14 \mathrm{~mA} \quad I_{C}=\beta I_{B}=28 \mathrm{~mA} \quad \begin{aligned}
& \text { Under Forward-Active } \\
& \text { assumption we had }
\end{aligned}
$$

$$
\text { KVL } 5+\left(-I_{C}(\text { sat }) \times 2.5 \mathrm{k} \Omega\right)-V_{C E}(\text { sat })=0
$$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=200
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

BJT is $O N$ since $V_{i}>V_{B E}$ (on)
Let's find the collector current at onset of saturation

$$
I_{B}=0.14 \mathrm{~mA} \quad I_{C}=\beta I_{B}=28 \mathrm{~mA} \quad \begin{aligned}
& \text { Under Forward-Active } \\
& \text { assumption we had }
\end{aligned}
$$

KVL

$$
\begin{aligned}
& 5+\left(-I_{C}(\text { sat }) \times 2.5 \mathrm{k} \Omega\right)-V_{C E}(\text { sat })=0 \\
& I_{C}(\text { sat })=4.8 \mathrm{~V} / 2.5 \mathrm{k} \Omega=1.92 \mathrm{~mA} \ll \beta I_{B}
\end{aligned}
$$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=200
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

BJT is $O N$ since $V_{i}>V_{B E}$ (on)
Let's find the collector current at onset of saturation

$$
I_{B}=0.14 \mathrm{~mA} \quad I_{C}=\beta I_{B}=28 \mathrm{~mA} \quad \begin{aligned}
& \text { Under Forward-Active } \\
& \text { assumption we had }
\end{aligned}
$$

KVL

$$
\begin{aligned}
& 5+\left(-I_{C}(\text { sat }) \times 2.5 \mathrm{k} \Omega\right)-V_{C E}(\text { sat })=0 \\
& I_{C}(\text { sat })=4.8 \mathrm{~V} / 2.5 \mathrm{k} \Omega=1.92 \mathrm{~mA} \ll \beta I_{B} \\
& V_{C E}=V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \text { Saturation mode }
\end{aligned}
$$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{2 0 0}
\end{aligned}
$$

$$
\text { (b) } V_{i}=3.5 \mathrm{~V}
$$

Let's find the base current at onset of saturation
$I_{B}($ at onset of saturation $)=\frac{I_{C}(\mathrm{sat})}{\beta}=9.6 \mu \mathrm{~A}$
$V_{i}($ at onset of saturation $)=9.6 \mu \mathrm{~A} \times 20 \mathrm{k} \Omega+0.7=0.892 \mathrm{~V}$
The base current can be increased further, but the collector current remains at the saturation value $I_{C}($ sat $)$.

Example 3: BJT with emitter resistor

$$
\begin{array}{ll}
V_{B E}(\mathrm{on})=0.7 \mathrm{~V} \\
V_{C E}(\mathrm{sat})=0.2 \mathrm{~V} & \\
\beta=100
\end{array}
$$

Example 3: BJT with emitter resistor

Example 3: BJT with emitter resistor

$$
\begin{gathered}
V_{B E}(\text { on })=0.7 \mathrm{~V} \\
V_{C E}(\text { sat })=\mathbf{0 . 2 V} \\
\quad \beta=\mathbf{1 0 0} \\
I_{E}=(\beta+1) I_{B}
\end{gathered}
$$

Assuming forward active mode

Base-emitter KVL

$-V_{i}+I_{B} R_{B}+V_{B E}+I_{E} R_{E}=0$
$-5+I_{B} \times 1 \mathrm{k}+0.7+(\beta+1) I_{B} \times 1 \mathrm{k}=0$
$I_{B}=\frac{4.3}{1 \mathrm{k}+(\beta+1) 1 \mathrm{k}}=\frac{4.3}{102 \mathrm{k}}=0.0422 \mathrm{~mA}=42.2 \mu \mathrm{~A}$

Example 3: BJT with emitter resistor
Assuming forward active mode
$I_{B}=0.0422 \mathrm{~mA}$
$I_{E}=(\beta+1) I_{B}=4.26 \mathrm{~mA}$
$I_{C}=\beta I_{B}=4.22 \mathrm{~mA}$

Now, check for saturation
Collector-emitter KVL
$-V_{C C}+I_{C} R_{C}+V_{C E}+I_{E} R_{E}=0$

Example 3: BJT with emitter resistor
Assuming forward active mode

$$
\begin{aligned}
I_{B} & =0.0422 \mathrm{~mA} \\
I_{E} & =(\beta+1) I_{B}=4.26 \mathrm{~mA} \\
I_{C} & =\beta I_{B}=4.22 \mathrm{~mA}
\end{aligned}
$$

Now, check for saturation

Collector-emitter KVL
$-V_{C C}+I_{C} R_{C}+V_{C E}+I_{E} R_{E}=0$ $I_{C} \underbrace{V_{C C}=10 \mathrm{~V}}_{\text {C }} R_{C}=3.6 \mathrm{k} \Omega$
$-10+4.22 \mathrm{~m} \times 3.6 \mathrm{k}+V_{C E}+4.26 \times 1 \mathrm{k}=0$
$V_{C E}=10-15.192-4.26=-9.452 \mathrm{~V} \ll V_{C E}($ sat $)$

Example 3: BJT with emitter resistor

$$
\begin{aligned}
& \text { Assuming forward active node } \\
& I_{B}=0.0422 \mathrm{~mA} \\
& I_{E}=(\beta+1) I_{B}=4.26 \mathrm{~mA} \\
& -V_{C C}+I_{C} R_{C}+V_{C E}+I_{E} R_{E}=0 \\
& -10+4.22 \mathrm{~m} \times 3.6 \mathrm{k}+V_{C E}+4.26 \times 1 \mathrm{k}=0 \\
& \text { Now, check for saturation } \\
& \text { Assumption is invalid. }
\end{aligned}
$$

$$
V_{C E}=V_{C E}(\text { sat })=0.2 \mathrm{~V}
$$

Remember

$$
I_{E}=\frac{\beta+1}{\beta} I_{C}=1.01 I_{C}
$$

(valid up to onset of saturation)

Previous results for currents are invalid

Remember

$$
I_{E}=\frac{\beta+1}{\beta} I_{C}=1.01 I_{C}
$$

(valid up to onset of saturation)

Recalculate collector-emitter KVL
$-V_{C C}+I_{C}($ onsat $) R_{C}+V_{C E}($ onsat $)+I_{E} R_{E}=0$
$-10+I_{C}($ onsat $) \times 3.6 \mathrm{k}+0.2+1.01 \times I_{C}($ onsat $) \times 1 \mathrm{k}=0$

Previous results for currents are invalid

ATTENTION - Relevant for HW9-PL

$$
I_{E}=\frac{\beta+1}{\beta} I_{C}
$$

Deeper in saturation one must keep using

$$
I_{E}=I_{B}+I_{C}
$$

is valid ONLY up to the
point of saturation onset is valid ONLY up to the
point of saturation onset

$$
V_{C C}=10 \mathrm{~V}
$$

AGAIN: The derivations in the previous slide ARE NOT VALID in deeper saturation but only at the onset point where the device transitions from Forward-Active mode to Saturation mode

When the base current is increased beyond onset, the voltage drop in the emitter resistor changes, since

$$
I_{E}=I_{B}+I_{C}
$$

If we assume that the saturation $V_{C E}$ (sat) remains at the value specified by the manufacturer throughout, in saturation

$$
V_{C C}-V_{C E}(\mathrm{sat})=R_{C} I_{C}+R_{E} I_{E}
$$

This equation has to be solved simultaneously with the base circuit KVL

$$
R_{B}=1 \mathrm{k} \Omega
$$

$$
V_{i}-V_{B E}=R_{B} I_{B}+R_{E} I_{E}
$$

Recalculated currents

$I_{C}($ onsat $)=9.8 / 4.61 \mathrm{k}=2.13 \mathrm{~mA}$

$I_{E}($ onsat $)=1.01 I_{C}=2.15 \mathrm{~mA}$

Find base voltage at onset of saturation

Recalculated currents

$I_{C}($ onsat $)=9.8 / 4.61 \mathrm{k}=2.13 \mathrm{~mA}$

$I_{E}($ onsat $)=1.01 I_{C}=2.15 \mathrm{~mA}$

Find base voltage at onset of

$$
R_{B}=\mathbf{1} \mathrm{k} \Omega
$$ saturation

$$
I_{B}(\text { onsat })=\frac{I_{C}(\text { onsat })}{\beta}=0.021 \mathrm{~mA} \quad \mathrm{KVL} I_{E} R_{E}=1 \mathrm{k} \Omega
$$

Recalculated currents

$I_{C}($ onsat $)=9.8 / 4.61 \mathrm{k}=2.13 \mathrm{~mA}$

$I_{E}($ onsat $)=1.01 I_{C}=2.15 \mathrm{~mA}$

Find base voltage at onset of saturation

$$
\begin{array}{ll}
I_{B}(\text { onsat })=\frac{I_{C}(\text { onsat })}{\beta}=0.021 \mathrm{~mA} & \mathrm{KVL}) I_{E} R_{E}=1 \mathrm{k} \Omega \\
\text { Base circuit KVL }
\end{array}
$$

$-V_{i}($ onsat $)+I_{B}($ onsat $) R_{B}+V_{B E}+I_{E}($ onsat $) R_{E}=0$
$V_{i}($ onsat $)=0.021 \mathrm{~m} \times 1 \mathrm{k}+0.7+2.15 \mathrm{~m} \times 1 \mathrm{k}$

Recalculated currents

$I_{C}($ onsat $)=9.8 / 4.61 \mathrm{k}=2.13 \mathrm{~mA}$

$I_{E}($ onsat $)=1.01 I_{C}=2.15 \mathrm{~mA}$

Find base voltage at onset of saturation

$$
I_{B}(\text { onsat })=\frac{I_{C}(\text { onsat })}{\beta}=0.021 \mathrm{~mA}
$$

Base circuit KVL

$V_{i}=$?

$$
R_{B}=\mathbf{1} \mathbf{k} \boldsymbol{\Omega}
$$

$-V_{i}($ onsat $)+I_{B}($ onsat $) R_{B}+V_{B E}+I_{E}($ onsat $) R_{E}=0$
$V_{i}($ onsat $)=0.021 \mathrm{~m} \times 1 \mathrm{k}+0.7+2.15 \mathrm{~m} \times 1 \mathrm{k}$
$V_{i}($ onsat $)=2.87 \mathrm{~V}$
At this input voltage on the base resistor, the BJT starts saturating

Resistor on emitter changes the saturation behavior

$V_{B E}($ on $) \leq V_{B}<V_{i}($ onsat $)=2.87 \mathrm{~V}$

Forward-Active mode
$V_{B}=V_{i}($ onsat $)=2.87 \mathrm{~V}$
Onset of saturation
(FA mode equations are still valid)

$V_{B}>V_{i}($ onsat $)=2.87 \mathrm{~V}$

"Deeper" saturation
(FA mode equations are NOT valid)

In deeper saturation, collector current decreases somewhat

I_{B} keeps increasing in deeper saturation
$V_{B}>V_{i}($ onsat $)=2.87 \mathrm{~V}$

$$
I_{C}<I_{C}(\text { onsat })=2.13 \mathrm{~mA}
$$

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

$$
\begin{aligned}
& V_{i}=I_{B} R_{B}+V_{B E}(\mathrm{on})+I_{E} R_{E} \\
& V_{C C}=I_{C} R_{C}+V_{C E}(\mathrm{sat})+I_{E} R_{E}
\end{aligned}
$$

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

$5=1 \mathrm{k} I_{B}+0.7+\left(I_{B}+I_{C}\right) 1 \mathrm{k}$
$10=3.6 \mathrm{k} I_{C}+0.2+\left(I_{B}+I_{C}\right) 1 \mathrm{k}$

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

$2 \mathrm{k} I_{B}+1 \mathrm{k} I_{C}=4.3$
$1 \mathrm{k} I_{B}+4.6 \mathrm{k} I_{C}=9.8$

$$
\begin{aligned}
& I_{B}=1.217 \mathrm{~mA} \\
& I_{C}=1.866 \mathrm{~mA}<I_{C} \text { (onsat) } \\
& I_{C}(\text { onsat })=2.13 \mathrm{~mA}
\end{aligned}
$$

RECAPITULATING: For BJT with added resistor on the emitter

To analyze deeper in saturation, one needs to solve the coupled KVL equations for base and collector loops with

$$
I_{E}=I_{B}+I_{C}
$$

$V_{C C}$ is fixed. Since I_{E} increases, I_{C} must decrease to maintain the collector KVL valid.

In our model we assume that $V_{C E}$ remains fixed at $V_{C E}(\mathrm{sat})$.

This is an approximation. As I_{C}
 decreases, $V_{C E}($ sat $)$ decreases slowly toward zero.

Some even simpler models just set $V_{C E}(\mathbf{s a t})=0$.

$V_{B E}<V_{B E}(\mathbf{O N}) ?$

BJT OFF

Emitter resistor complicates saturation analysis

BJT I-V curves are measured on actual devices

Measurements are made by ramping the $V_{C E}$ at specific values of base current I_{B}

BJT I-V curves

Example of graphical use of BJT I-V curves

$$
V_{B E}(\mathrm{on})=0.7 \mathrm{~V}
$$

$$
\beta=100
$$

Example of graphical use of BJT I-V curves

Example of graphical use of BJT I-V curves

Example of graphical use of BJT I-V curves

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=\mathbf{0 . 7 V} \\
& \beta=100
\end{aligned}
$$

Example of graphical use of BJT I-V curves

Example of graphical use of BJT I-V curves

Example of graphical use of BJT I-V curves

Example of graphical use of BJT I-V curves

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=\mathbf{0 . 7 V} \\
& \beta=100
\end{aligned}
$$

Let's examine the Base circuit:

Example of graphical use of BJT $I-V$ curves

$V_{B E}($ on $)=0.7 V$
$\beta=100$
Let's examine the Base circuit:
$-15+I_{B} R_{B}+V_{B E}=0$
$-15+1.43 \mathrm{M} \times I_{B}+0.7=0$

Example of graphical use of BJT I-V curves

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=\mathbf{0 . 7 V} \\
& \beta=\mathbf{1 0 0}
\end{aligned}
$$

Let's examine the Base circuit:
$-15+I_{B} R_{B}+V_{B E}=0$
$-15+1.43 \mathrm{M} \times I_{B}+0.7=0$

$$
R_{B}=1.43 \mathrm{M} \Omega
$$

$$
R_{C}=3 \mathrm{k} \Omega<I_{C C}=15 \mathrm{~V}
$$

$$
I_{B}=\frac{14.3}{1.43 \times 10^{6}}=10 \mu \mathrm{~A}
$$

Example of graphical use of BJT I-V curves

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=\mathbf{0 . 7 V} \\
& \beta=\mathbf{1 0 0}
\end{aligned}
$$

Let's examine the Base circuit:
$-15+I_{B} R_{B}+V_{B E}=0$
$-15+1.43 \mathrm{M} \times I_{B}+0.7=0$

$$
R_{B}=1.43 \mathrm{M} \Omega
$$

$$
I_{B}=\frac{14.3}{1.43 \times 10^{6}}=10 \mu \mathrm{~A}
$$

(

Example of graphical use of BJT I-V curves

BJT wired as a diode

$$
\begin{gathered}
-V_{1}+R_{1} I_{1}+V_{B E}=0 \\
I_{1}=\frac{V_{1}-V_{B E}}{R_{1}}
\end{gathered}
$$

As long as $V_{1}>V_{B E}(\mathbf{o n})$, the BJT is in Forward-Active mode. BJT's wired as in the diagram, are often adopted in integrated circuits, to obtain ultra-low leakage diodes
 and for design of circuits which are temperature compensating.

$$
\begin{gathered}
\beta=100 \\
V_{B E}(o n)=0.7 \mathrm{~V} \\
V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{gathered}
$$

$$
\beta=100
$$

$$
V_{B E}(o n)=0.7 \mathrm{~V}
$$

$$
V_{C E}(s a t)=0.2 \mathrm{~V}
$$

Assume: BJT ON

$V_{B E}=V_{C E}=0.7 V$
$\mathrm{V}_{\mathrm{x}}=V_{C E}+4 V=4.7 \mathrm{~V}$

$\beta=100$

$$
V_{B E}(o n)=0.7 \mathrm{~V}
$$

$$
V_{C E}(s a t)=0.2 \mathrm{~V}
$$

Assume: BJT ON

$$
\begin{gather*}
I_{1}=I_{C}+I_{2} \\
=I_{C}+I_{B} \\
I_{1}=I_{E} \\
I_{1}=\mathbf{1 k \Omega} \times \mathbf{k V} \\
=\mathbf{4 m A} \\
\hline I_{E}=\mathbf{1 k} \boldsymbol{k} \times \mathbf{4 V} \tag{52}\\
=\mathbf{4 m A}
\end{gather*}
$$

[^0]: (a) $V_{i}=0.5 \mathrm{~V}$
 (b) $V_{i}=3.5 \mathrm{~V}$

