ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 26 MWF – 12:00pm

Prof. Umberto Ravaioli

2062 ECE Building

Lecture 26 – Summary

- **Learning Objectives**
- 1. More BJT practice
- 2. Transistor as diode
- 3. Graphical use of *I-V* curves

Example 2: Find the BJT mode of operation

$$V_{BE}(on) = 0.7V$$

 $V_{CE}(sat) = 0.2V$
 $\beta = 200$
(*a*) $V_i = 0.5V$
(*b*) $V_i = 3.5V$

(

$$V_{BE}(\mathbf{on}) = \mathbf{0.7V}$$

 $V_{CE}(\mathbf{sat}) = \mathbf{0.2V}$
 $\boldsymbol{\beta} = \mathbf{200}$

$$(a) V_i = 0.5V$$

BJT is OFF since

 $V_i < V_{BE}(on)$

Cut-off mode

$$V_{BE}(\mathbf{on}) = \mathbf{0.7V}$$

 $V_{CE}(\mathbf{sat}) = \mathbf{0.2V}$
 $\boldsymbol{\beta} = \mathbf{200}$

(b) $V_i = 3.5V$ BJT is ON since $V_i > V_{BE}(on)$ Assume forward active mode and check the collector behavior

KVL
$$-3.5 + I_B \times 20 k\Omega + 0.7 = 0$$

$$V_{CC} = 5V$$

$$R_{C} = 2.5 \text{ k}\Omega$$

$$I_{C}$$

$$R_{B} = 20 \text{ k}\Omega$$

$$V_{i} \circ V_{CE}$$

$$I_{B} V_{BE}$$

$$I_{E}$$

$$I_{E}$$

$$I_B = 0.14$$
 mA

$$I_C = \beta I_B = 200 \times 0.14 = 28$$
mA

$$V_{BE}(\mathbf{on}) = \mathbf{0.7V}$$

 $V_{CE}(\mathbf{sat}) = \mathbf{0.2V}$
 $\boldsymbol{\beta} = \mathbf{200}$

(b) $V_i = 3.5V$ BJT is ON since $V_i > V_{BE}(on)$ Assume forward active mode and check the collector behavior

KVL $-3.5 + I_B \times 20 k\Omega + 0.7 = 0$

 $I_C = \beta I_B = 200 \times 0.14 = 28$ mA

$$V_{CC} = 5V$$

$$R_{C} = 2.5 \text{ k}\Omega$$

$$V_{i} \circ V_{E}$$

$$I_{B} V_{BE}$$

$$I_{E}$$

$$I_{E}$$

$$I_B = 0.14 \,\mathrm{mA}$$

$$Contradiction = 65V < 0.2V$$

$$V_{CE} = V_{CC} - I_C R_C = 5 - 28 \text{m} \times 2.5 \text{k} = -65 \text{V} < 0.2 \text{V}$$

$$V_{BE}(on) = 0.7V$$

 $V_{CE}(sat) = 0.2V$
 $\beta = 200$
b) $V_i = 3.5V$

KVL

BJT is ON since
$$V_i > V_{BE}(on)$$

Assume forward active mode and check the collector behavior

 $I_C = \beta I_B = 200 \times 0.14 = 28$ mA

 $-3.5 + I_B \times 20 k\Omega + 0.7 = 0$

$$V_{CC} = 5V$$

$$R_{C} = 2.5 \text{ k}\Omega$$

$$I_{C}$$

$$R_{B} = 20 \text{ k}\Omega$$

$$V_{i} \circ V_{CE}$$

$$I_{B} V_{BE}$$

$$I_{E}$$

$$I_{E}$$

$$I_B = 0.14 \,\mathrm{mA}$$

Contradiction

7

$$V_{CE} = V_{CC} - I_C R_C = 5 - 28 \text{m} \times 2.5 \text{k} = -65 \text{V} < 0.2 \text{V}$$

 $V_{CE} = V_{CE}(\text{sat}) = 0.2 \text{V}$ Saturation mode

$$V_{BE}(\mathbf{on}) = 0.7V$$

$$V_{CE}(\mathbf{sat}) = 0.2V$$

$$\beta = 200$$

$$R_{E}$$

$$V_{i} \sim \mathbf{v}$$
(b) $V_{i} = 3.5V$
BJT is ON since $V_{i} > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation

$$V_{CC} = 5V$$

$$R_{C} = 2.5 \text{ k}\Omega$$

$$R_{B} = 20 \text{ k}\Omega$$

$$V_{CE}$$

$$V_{CE}$$

$$I_{B}$$

$$V_{BE}$$

$$I_{E}$$

$$I_B = 0.14 \text{mA}$$

 $I_C = \beta I_B = 28 \text{mA}$

Under Forward-Active assumption we had

$$V_{BE}(\mathbf{on}) = \mathbf{0}.7V$$

$$V_{CE}(\mathbf{sat}) = \mathbf{0}.2V$$

$$\beta = 200$$

$$(b) V_i = \mathbf{3}.5V$$
BJT is ON since $V_i > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation
$$I_B = \mathbf{0}.14\text{mA}$$

$$I_C = \beta I_B = 28\text{mA}$$

$$V_{CE} = 5V$$

$$R_C = 2.5 \text{ k}\Omega$$

$$R_B = 20 \text{ k}\Omega$$

$$V_i = \frac{1}{I_E}$$

$$V_{EE} = \frac{1}{I_E}$$

$$V_{EE} = \frac{1}{I_E}$$

$$V_{EE} = \frac{1}{I_E}$$

$$V_{EE} = \frac{1}{I_E}$$

KVL
$$5 + (-I_c(sat) \times 2.5k\Omega) - V_{CE}(sat) = 0$$

$$V_{BE}(\mathbf{on}) = \mathbf{0}.7V$$

$$V_{CE}(\mathbf{sat}) = \mathbf{0}.2V$$

$$\beta = 200$$

$$(b) V_i = 3.5V$$
BJT is ON since $V_i > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation
$$I_B = \mathbf{0}.14\text{ mA} \qquad I_C = \beta I_B = 28\text{ mA} \qquad \text{Under Forward-Active assumption we had}$$
KVL $5 + (-I_C(\mathbf{sat}) \times 2.5k\Omega) - V_{CE}(\mathbf{sat}) = 0$

$$I_C(\mathbf{sat}) = 4.8V/2.5k\Omega = 1.92\text{ mA} \ll \beta I_B$$

$$V_{BE}(\mathbf{on}) = \mathbf{0}.7\mathbf{V}$$

$$V_{CE}(\mathbf{sat}) = \mathbf{0}.2\mathbf{V}$$

$$\beta = 200$$

$$(b) V_i = 3.5\mathbf{V}$$
BJT is ON since $V_i > V_{BE}(\mathbf{on})$
Let's find the collector current at onset of saturation
$$I_B = \mathbf{0}.14\mathbf{mA}$$

$$I_C = \beta I_B = 28\mathbf{mA}$$

$$Under \text{ Forward-Active assumption we had}$$
KVL
$$5 + (-I_C(\mathbf{sat}) \times 2.5\mathbf{k}\Omega) - V_{CE}(\mathbf{sat}) = \mathbf{0}$$

$$I_C(\mathbf{sat}) = 4.8\mathbf{V}/2.5\mathbf{k}\Omega = 1.92\mathbf{mA} \ll \beta I_B$$

$$V_{CE} = V_{CE}(\mathbf{sat}) = \mathbf{0}.2\mathbf{V}$$
Saturation mode

 V_i (at onset of saturation) = 9.6 μ A × 20 $k\Omega$ + 0.7 = 0.892V

The base current can be increased further, but the collector current remains at the saturation value I_c (sat).

$$V_{BE}(on) = 0.7V$$
$$V_{CE}(sat) = 0.2V$$
$$\beta = 100$$
$$I_{E} = (\beta + 1)I_{B}$$

Previous results for currents are invalid

$$\square V_{CE} = V_{CE}(\text{sat}) = 0.2 \text{ V}$$

Remember

$$I_E = \frac{\beta + 1}{\beta} I_C = 1.01 I_C$$

(valid up to onset of saturation)

V

-10V

 $-10 + I_c(\text{onsat}) \times 3.6\text{k} + 0.2 + 1.01 \times I_c(\text{onsat}) \times 1\text{k} = 0$

Previous results for currents are invalid $V_{cc} = 10V$ $V_{CE} = V_{CE}(sat) = 0.2 V$ = 3.6 kΩ $R_B = 1 \text{ k}\Omega$ Remember V_{CE} $I_E = \frac{\beta + 1}{\beta} I_C = 1.01 I_C$ $V_i = ?$ (valid up to onset of saturation) $R_E = 1 \mathrm{k}\Omega$ KVL **Recalculate collector-emitter KVL** $-V_{CC} + I_C(\text{onsat})R_C + V_{CE}(\text{onsat}) + I_ER_E = 0$

 $-10 + I_{\mathcal{C}}(\text{onsat}) \times 3.6\text{k} + 0.2 + 1.01 \times I_{\mathcal{C}}(\text{onsat}) \times 1\text{k} = 0$

$$I_C(\text{onsat}) = 9.8/4.61\text{k} = 2.13 \text{ mA}$$

$$I_E(\text{onsat}) = 1.01 I_C = 2.15 \text{ mA}$$
At onset of saturation

ATTENTION – Relevant for HW9-PL

AGAIN: The derivations in the previous slide ARE NOT VALID in deeper saturation but only at the onset point where the device transitions from Forward-Active mode to Saturation mode

When the base current is increased beyond onset, the voltage drop in the emitter resistor changes, since

 $I_E = I_B + I_C$

If we assume that the saturation $V_{CE}(\text{sat})$ remains at the value specified by the manufacturer $V_i = 5V \sim 1000$ throughout, in saturation

$$V_{CC} - V_{CE}(\text{sat}) = R_C I_C + R_E I_E$$

This equation has to be solved simultaneously with the base circuit KVL

$$V_i - V_{BE} = R_B I_B + R_E I_E$$

 $V_{cc} = 10V$ = 3.6 kΩ $R_B = 1 \text{ k}\Omega$ V_{CE} KVL

 $-V_i(\text{onsat}) + I_B(\text{onsat})R_B + V_{BE} + I_E(\text{onsat})R_E = 0$

 $V_i(\text{onsat}) = 0.021 \text{m} \times 1\text{k} + 0.7 + 2.15 \text{m} \times 1\text{k}$

 $-V_i(\text{onsat}) + I_B(\text{onsat})R_B + V_{BE} + I_E(\text{onsat})R_E = 0$

 $V_i(\text{onsat}) = 0.021 \text{m} \times 1\text{k} + 0.7 + 2.15 \text{m} \times 1\text{k}$

 $V_i(\text{onsat}) = 2.87 \text{ V}$

At this input voltage on the base resistor, the BJT starts saturating

Resistor on emitter changes the saturation behavior

$$V_{BE}(\text{on}) \le V_B < V_i(\text{onsat}) = 2.87 \text{ V}$$

Forward-Active mode

$$V_B = V_i$$
(onsat) = 2.87 V

Onset of saturation (FA mode equations are still valid)

$$V_B > V_i$$
(onsat) = 2.87 V

"Deeper" saturation (FA mode equations are NOT valid)

In deeper saturation, collector current decreases somewhat

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

$$10 = 3.6 \text{k} I_{C} + 0.2 + (I_{B} + I_{C}) \text{lk}$$

31

MUST SOLVE FOR COUPLED KVL's IN BASE AND COLLECTOR LOOPs

$$V_{cc} = 10V$$

$$V_{cc} = 10V$$

$$V_{cc} = 10V$$

$$V_{cc} = 10V$$

$$I_{c} = 5V$$

$$I_{c} = R_{c} = 3.6 \text{ k}\Omega$$

$$I_{c} = V_{cc} = 6.717 \text{ V}$$

$$assume \text{ constant}$$

$$V_{ce} = V_{ce}(\text{sat}) = 0.2 \text{ V}$$

$$I_{B} = 1 \text{ k}\Omega$$

$$I_{E} = 1.217 \text{ mA}$$

$$I_{C} = 1.866 \text{ mA} < I_{c}(\text{onsat})$$

$$I_{C}(\text{onsat}) = 2.13 \text{ mA}$$

$$I_{C} = 1.3 \text{ mA}$$

RECAPITULATING: For BJT with added resistor on the emitter

To analyze deeper in saturation, one needs to solve the coupled KVL equations for base and collector loops with

$$I_E = I_B + I_C$$

 V_{CC} is fixed. Since I_E increases, I_C must decrease to maintain the collector KVL valid.

In our model we assume that V_{CE} remains fixed at $V_{CE}(sat)$.

This is an approximation. As I_C decreases, $V_{CE}(\text{sat})$ decreases slowly toward zero.

Some even simpler models just set $V_{CE}(sat) = 0$.

 $V_{cc} = 10V$ 3.6 kΩ $R_{R} = 1 \text{ k}\Omega$ V_{CE} $V_i = 5V \diamond$

Emitter resistor complicates saturation analysis 34

BJT *I-V* curves are measured on actual devices

Measurements are made by ramping the V_{CE} at specific values of base current I_B

BJT *I-V* curves

 $V_{BE}(\text{on}) = 0.7\text{V}$

 $\beta = 100$

Let's examine the Base circuit:

- $V_{BE}(\mathbf{on}) = \mathbf{0.7V}$
- $\beta = 100$

- $V_{BE}(\mathbf{on}) = \mathbf{0.7V}$
- $\beta = 100$

- $V_{BE}(\mathbf{on}) = \mathbf{0}.\,\mathbf{7V}$
- $\beta = 100$

$$-V_{1} + R_{1}I_{1} + V_{BE} = 0$$
$$I_{1} = \frac{V_{1} - V_{BE}}{R_{1}}$$

As long as $V_1 > V_{BE}(on)$, the BJT is in Forward-Active mode.

BJT's wired as in the diagram, are often adopted in integrated circuits, to obtain ultra-low leakage diodes and for design of circuits which are temperature compensating.

eta = 100 $V_{BE}(on) = 0.7V$ $V_{CE}(sat) = 0.2V$

Assume: BJT ON

