ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 28
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 28 - Summary

Learning Objectives

1. $p-n-p$ transistor
2. Power consumption of BJT

$p-n-p$ Transistors

Bipolar Junction Transistor (BJT) p-n-p

Circuit Symbol
$p-n-p$ BJT

Bipolar Junction Transistor (BJT)
 $p-n-p$

Simple physics explanation - Forward active mode

Holes are injected from the emitter into the base through a forward biased emitter-base diode

Most holes traverse the base.
The base current injects electrons which recombine with some holes, controlling the electric current flow from emitter to collector.

Holes reaching the reverse biased junction are swept into the collector by high electric field in the depletion region.
$p-n-p$ transistors operate similarly to $n-p-n$ transistors, except that polarities are reversed

$$
\begin{aligned}
& V_{B E}=V_{B E}(\mathrm{ON}) \approx-0.6 \text { to }-0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat}) \approx-0.2 \\
& I_{E}=I_{B}+I_{C} \\
& I_{C}=\beta I_{B} \quad \text { Forward Active mode }
\end{aligned}
$$

$p-n-p$ transistors were widely used in the beginning of solid-state electronics, because easier to manufacture with older technologies. Here is a simple radio diagram from a 1959 booklet for enthusiasts.

Collector connected to negative battery voltage

$V_{B E}>V_{B E}(\mathbf{O N}) ?$

$V_{B E}(\mathrm{ON})$ is negative

BJT OFF

$V_{C E}$ is more negative than $V_{C E}($ sat $)$

In some cases it is convenient to draw p-n-p transistors with the emitter up, particularly in circuits where they are paired with $n-p-n$ transistors

As an example, a matched pair of power complementary transistors (rated up to 15A), used to regulate electric motors as in robotic applications, for even control in both forward and reverse motion. A similar design is used in B-class amplifiers (next slide).

Design example (Electronics Designer's Casebook, (1976) p. 68)

https://worldradiohistory.com/Archive-Electronics/Electronics-Designer's-Cookbook.pdf

Crossover-distortion regulator. Complementary transistors Q_{1} and Q_{2} form a power amplifier stage in which the bias point is controlled closely through transistor Q_{3} acting as a voltage regulator. The biasadjusting potentiometer permits exact setting of the stage's bias point so that crossover distortion is held to a minimum. The transistor regulator also automatically compensates for varying temperature.

We will solve a problem with the $p-n-p$ transistor configuration below, without using negative bias.

Collector is connected toward ground and the emitter is connected to a positive bias.

$p-n-p$ BJT

$p-n-p$ Circuit Example 1: \quad Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& V_{B E}(\text { on })=-0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=-0.2 \mathrm{~V} \\
& \beta=5
\end{aligned}
$$

(a) $I_{B}=0 \mathrm{~A}$
(b) $I_{B}=-1 \mathrm{~mA}$

(c) $I_{B}=-5 \mathrm{~mA}$

$p-n-p$ Circuit Example 1: \quad Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=-0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=\mathbf{5}
$$

(a) $I_{B}=0 \mathrm{~A}$

Transistor is OFF

$$
\begin{aligned}
& I_{C}=0 \mathrm{~A} \\
& V_{C E}=-\mathbf{1 0 V} \\
& V_{C}=\mathbf{0} \mathrm{V}
\end{aligned}
$$

Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V} \\
& \beta=5
\end{aligned}
$$

Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V} \\
& \beta=5
\end{aligned}
$$

Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V} \\
& \beta=5
\end{aligned}
$$

Now we solve the same problem but with the $p-n-p$ transistor configuration below, where we shift the ground reference. THERE IS COMPLETE EQUIVALENCE WITH THE PREVIOUS CIRCUIT.

Collector is connected to a negative bias, emitter is connected toward ground (all voltages shifted by $\mathbf{- 1 0 V}$).

This is to give you a template in case of future need...

$p-n-p$ Circuit Example 1: Find: $I_{C}, V_{C E}, V_{C}$

 SAME PROBLEM BUT WITHNEGATIVE BIAS AND EMITTER
CONNECTED TOWARD GROUND
$V_{B E}(\mathrm{On})=-0.7 \mathrm{~V}$
$V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V}$
$\beta=5$
(a) $I_{B}=0 \mathrm{~A}$

Transistor is OFF

$$
\begin{aligned}
& I_{C}=0 \mathrm{~A} \\
& V_{C E}=-10 \mathrm{~V} \\
& V_{C}=-10 \mathrm{~V}
\end{aligned}
$$

Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{align*}
& V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V} \\
& \beta=5
\end{align*}
$$

Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& V_{B E}(\text { on })=-0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=-0.2 \mathrm{~V} \\
& \beta=5
\end{aligned}
$$

(c) $I_{B}=5 \mathrm{~mA}$

Assume Forward Active Mode

$$
I_{C}=\beta I_{B}=25 \mathrm{~mA}
$$

$$
-V_{C E}-10+I_{C} \times 1 \mathbf{k} \Omega=0
$$

$$
V_{C E}=-10+25 \mathrm{~mA} \times 1 \mathrm{k} \Omega=15 \mathrm{~V}>V_{C E}(\mathrm{sat})
$$

Find: $I_{C}, V_{C E}, V_{C}$

$$
\begin{aligned}
& \begin{array}{l}
V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V} \\
\beta=5
\end{array} \\
& \text { (c) } I_{B}=5 \mathrm{~mA} \\
& V_{C E}=V_{C E}(\text { sat })=-0.2 \mathrm{~V} \\
& I_{C}(\text { sat }) \times 10 \mathrm{k} \Omega-(-0.2)-10=0 \\
& I_{C}(\text { sat })=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA} \\
& V_{C}=V_{C E} \\
& V_{C}=-0.2 \mathrm{~V} \\
& { }^{2}
\end{aligned}
$$

We solve again a problem with the p-n-p transistor configuration below, without using negative bias.

Collector is connected toward ground and the emitter is connected to a positive bias.

$p-n-p$ BJT
$p-n-p$ Circuit Example 2: Find: I_{C} $V_{B E}(\mathrm{on})=-0.7 \mathrm{~V}$ $V_{C E}(\mathrm{sat})=-0.2 \mathrm{~V}$ $\beta=10$

Assume ForwardActive mode

$-5+I_{B} R_{B}+V_{B E}+3 \mathrm{k} I_{E}+10=0$ $100 \mathbf{k} I_{B}-0.7+3 \mathbf{k}(\beta+1) I_{B}+5=0$ $100 \mathrm{k} I_{B}+3 \mathrm{k}(10+1) I_{B}=-4.3$

$$
I_{B}=-0.0323 \mathrm{~mA}
$$

$$
I_{B}=-4.3 / 133 k
$$

$p-n-p$ Circuit Example 2: Find: I_{C}

$$
\begin{aligned}
& V_{B E}(\text { on })=-0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=-0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

Assume ForwardActive mode

$$
I_{B}=-0.0323 \mathrm{~mA}
$$

$$
I_{C}=\beta I_{B}=-0.323 \mathrm{~mA}
$$

$$
I_{E}=(\beta+1) I_{B}=-0.355 \mathrm{~mA}
$$

$10+3 \mathrm{k} I_{E}+V_{C E}+2 \mathrm{k} I_{C}=0$

$$
V_{C E}=-8.289 \mathrm{~V}
$$

MORE NEGATIVE THAN $V_{C E}$ (sat) OK

Now we solve the same problem but with the $p-n-p$ transistor configuration below, where we shift the ground reference. THERE IS COMPLETE EQUIVALENCE WITH THE PREVIOUS CIRCUIT.

Collector is connected to a negative bias, emitter is connected toward ground.

$p-n-p$ Circuit Example 2: Find: I_{C}
SAME PROBLEM BUT WITH negative bias and emitter CONNECTED TOWARD GROUND

$$
\begin{aligned}
& V_{B E}(\text { on })=-0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=-0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

Assume ForwardActive mode

$$
5-I_{B} R_{B}+V_{B E}-3 k I_{E}=0
$$

$4.3=100 \mathrm{k} I_{B}+3 \mathrm{k}(10+1) I_{B}$

$$
I_{B}=0.0323 \mathrm{~mA}
$$

$$
I_{B}=4.3 / 133 \mathrm{k}
$$

$p-n-p$ Circuit Example 2: Find: I_{C}

SAME PROBLEM BUT WITH negative bias and emitter CONNECTED TOWARD GROUND

$$
\begin{aligned}
& V_{B E}(\mathrm{on})=-0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=-0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

Assume ForwardActive mode

$$
I_{B}=0.0323 \mathrm{~mA}
$$

$$
I_{C}=\beta I_{B}=0.323 \mathrm{~mA}
$$

$$
I_{E}=(\beta+1) I_{B}=0.355 \mathrm{~mA}
$$

Power in Transistor

BJT as a switch

The BJT has important applications as a current controlled "valve" or as a "logic" element

We wish to switch ON and OFF power consumption by the load using a BJT instead of a mechanical switch.

BJT as a switch

Power consumed by the transistor is lost

 (it is part of operation costs)
$P_{B J T}=V_{B E} \times I_{B}+V_{C E} \times I_{C}$

Example: Find $P_{B J T}$ and $P_{\text {Load }}$

$$
\begin{aligned}
& V_{B E}(\text { on })=\mathbf{0 . 7 V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \boldsymbol{\beta}=\mathbf{5 0}
\end{aligned}
$$

1. $I_{B}=0 \mathrm{~mA}$
2. $I_{B}=0.1 \mathrm{~mA}$
3. $I_{B}=0.5 \mathrm{~mA}$

Example: Find $P_{B J T}$ and $P_{\text {Load }}$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \boldsymbol{\beta}=\mathbf{5 0}
\end{aligned}
$$

1. $I_{B}=0 \mathrm{~mA}$

BJT is OFF

$P_{B J T}=0 \mathrm{~W}$

$\boldsymbol{P}_{\text {Load }}=0$ W

Example: Find $P_{B J T}$ and $P_{\text {Load }}$
$V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$
$V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}$
$\beta=50$
2. $I_{B}=0.1 \mathrm{~mA}$

Assume Forward Active mode $I_{C}=\beta I_{B}=5 \mathrm{~mA}$ $V_{C E}=10-I_{C} R_{L}=5 \mathrm{~V}$

$P_{B J T}=V_{B E} \times I_{B}+V_{C E} \times I_{C}=0.7 \times 0.1 \mathrm{~m}+5 \times 5 \mathrm{~m}$ $P_{B J T}=\mathbf{2 5 . 0 7 \mathrm { mW }}$
$P_{\text {Load }}=I_{C}^{2} R_{L}=(5 \mathrm{~mA})^{2} \times 1 \mathrm{k} \Omega=25 \mathrm{~mW}$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{5 0}
\end{aligned}
$$

$$
\text { 3. } I_{B}=0.5 \mathrm{~mA}
$$ BJT is in Saturation

$I_{C}($ sat $)=9.8 \mathrm{~mA}$

$$
P_{B J T}=0.7 \times 0.5 \mathrm{~m}+0.2 \times 9.8 \mathrm{~m}=2.31 \mathrm{~mW}
$$

$P_{\text {Load }}=I_{C}^{2} R_{L}=(9.8 \mathrm{~mA})^{2} \times 1 \mathrm{k} \Omega=96.04 \mathrm{~mW}$

