ECE 205 "Electrical and Electronics Circuits"

Spring 2022 - LECTURE 29
MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Quiz 3 - Score Distribution

Quiz 3 - Statistics

Number of students 292
Mean score 88\%
Standard deviation 14\%
Median score 95\%
Minimum score 28\%
Maximum score 100\%
Number of 0\%0 (0\% of class)
Number of 100\%28 (10\% of class)

Lecture 29 - Summary

Learning Objectives

1. Power in Transistors
2. Binary logic
3. Elementary logic operators
4. Boolean algebra

Power in Transistors

BJT as a switch

The BJT has important applications as a current controlled "valve" or as a "logic" element

We wish to switch ON and OFF power consumption by the load using a BJT instead of a mechanical switch.

BJT as a switch

Power consumed by the transistor is lost (it is part of operations costs)

$P_{B J T}=V_{B E} \times I_{B}+V_{C E} \times I_{C}$

Example: Find $P_{B J T}$ and $P_{\text {Load }}$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{5 0}
\end{aligned}
$$

1. $I_{B}=0 \mathrm{~mA}$
2. $I_{B}=0.1 \mathrm{~mA}$
3. $I_{B}=0.5 \mathrm{~mA}$

Example: Find $P_{B J T}$ and $P_{\text {Load }}$

$V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$
$V_{C E}($ sat $)=0.2 V$
$\beta=50$

1. $I_{B}=0 \mathrm{~mA}$

BJT is OFF

$\boldsymbol{P}_{B J T}=0 \mathrm{~W}$

$P_{\text {Load }}=0$ W

This is the state in which the transistor switch is OPEN and the load is idle. In reality, there will be some current leakage in the non-ideal $p-n$ junctions consuming minute amount of power, but this is negligible in circuits with a small number of transistors.

Now we CLOSE the switch, to let current flow through the load \boldsymbol{R}_{L}.

Which state of operation should we prefer for the BJT to be ON, in order to minimize the power consumed by the switch itself?

Example: Find $P_{B J T}$ and $P_{\text {Load }}$
$V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$
$V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}$
$\beta=50$
2. $I_{B}=0.1 \mathrm{~mA}$

Assume Forward Active mode $I_{C}=\beta I_{B}=5 \mathrm{~mA}$ $V_{C E}=10-I_{C} R_{L}=5 \mathrm{~V}$

$P_{B J T}=V_{B E} \times I_{B}+V_{C E} \times I_{C}=0.7 \times 0.1 \mathrm{~m}+5 \times 5 \mathrm{~m}$ $P_{B J T}=\mathbf{2 5 . 0 7 \mathrm { mW }}$
$P_{\text {Load }}=I_{C}^{2} R_{L}=(5 \mathrm{~mA})^{2} \times 1 \mathrm{k} \Omega=25 \mathrm{~mW}$

$$
\begin{aligned}
& V_{B E}(\text { on })=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=\mathbf{5 0}
\end{aligned}
$$

$$
\text { 3. } I_{B}=0.5 \mathrm{~mA}
$$ BJT is in Saturation

$I_{C}($ sat $)=9.8 \mathrm{~mA}$

$$
P_{B J T}=0.7 \times 0.5 \mathrm{~m}+0.2 \times 9.8 \mathrm{~m}=2.31 \mathrm{~mW}
$$

$P_{\text {Load }}=I_{C}^{2} R_{L}=(9.8 \mathrm{~mA})^{2} \times 1 \mathrm{k} \Omega=96.04 \mathrm{~mW}$

Introduction to Digital Logic

Binary Computer Logic

Logic is a science which studies the reasoning needed to reach a conclusion or make a decision.

Computer operations are based on a form of logic which considers two possible states: TRUE or FALSE.

In a computer, these states are encoded into numbers.

For instance:

$$
\begin{aligned}
& \text { FALSE }=0 \\
& \text { TRUE }=1
\end{aligned}
$$

Binary Number System

The total number of digits, used to express numbers, is called the "base". We normally use the base-10 (or decimal) number system, with digits from 0 to 9.

Similarly, the complete number system can be constructed with a base of two numbers: 0 and 1 . This is the base-2 or "binary" system.

Examples:

DECIMAL	BINARY
5	101
13	1101
24	11000
100	1100100

Logic Operations

Binary logic is based on a set of seven elementary logical operations with two inputs and one output. The elements which accomplish these operations are called "Logic Gates". They are represented with the symbols below in a logic circuit.

NOT

AND

OR

OUTPUT
TRUTH TABLE

NOT
(inverter)

A	Y
0	1
1	0

AND

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

INPUT OUTPUT
TRUTH TABLE
NAND

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

TRUTH TABLE

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Algebra

Logic operations can be represented with formulas, using a special formalism called Boolean Algebra. The following table shows the Boolean notation.

OPERATOR	BOOLEAN ALGEBRA
NOT	$\mathbf{Y}=\overline{\mathbf{A}}$
AND	$\mathbf{Y}=\mathbf{A ~ B}$
OR	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
NAND	$\mathbf{Y}=\overline{\mathbf{A B}}$
NOR	$\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}$
XOR	$\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}$
XNOR	$\mathbf{Y}=\overline{\mathbf{A} \oplus \mathbf{B}}$

NOTE: Some authors use A.B for A B and A^{\prime} for \bar{A}

Boolean Algebra Simplifications Table

When a logic circuit is designed to obtain the desired behavior, it can be simplified by using the following laws to minimize the number of gates.

LAWS	AND	OR
Identity	$\mathbf{1} \mathbf{A}=\mathbf{A}$	$\mathbf{0}+\mathbf{A}=\mathbf{A}$
Null	$\mathbf{0} \mathbf{A}=\mathbf{0}$	$\mathbf{1}+\mathbf{A}=\mathbf{1}$
Idempotent	$\mathbf{A ~ A}=\mathbf{A}$	$\mathbf{A}+\mathbf{A}=\mathbf{A}$
Inverse	$\mathbf{A} \overline{\mathbf{A}}=\mathbf{0}$	$\mathbf{A}+\overline{\mathbf{A}}=\mathbf{1}$
Commutative	$\mathbf{A ~ B}=\mathbf{B} \mathbf{A}$	$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
Associative	$(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$	$(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
Distributive	$\mathbf{A}+\mathbf{B C}=(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{C})$	$\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
Absorption	$\mathbf{A}(\mathbf{A}+\mathbf{B})=\mathbf{A}$	$\mathbf{A}+\mathbf{A B}=\mathbf{A}$
		$\mathbf{A}+\overline{\mathbf{A}} \mathbf{B}=\mathbf{A}+\mathbf{B}$

Involution Law

$$
\overline{\overline{\mathbf{A}}}=\mathbf{A}
$$

AND VERY IMPORTANT:

De Morgan Theorem

$$
\begin{aligned}
& \text { 1) } \overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}} \overline{\mathbf{B}} \\
& \text { 2) } \overline{\mathbf{A B}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}
\end{aligned}
$$

Circuit implementation

De Morgan Theorem

$$
\text { 1) } \overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}} \overline{\mathbf{B}}
$$

Note

In the practice it is not uncommon to simplify digital circuit layouts by expressing a NOT gate with a "bubble" in a connected element, for example :

as done already in elementary gate definitions:

Circuit implementation

De Morgan Theorem

$$
\text { 2) } \overline{\mathbf{A B}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}
$$

AND Absorption Law (Proof)

Apply OR Distributive Law $A(B+C)=A B+A C$

Apply Idempotent Law
$\mathbf{A} \mathbf{A}=\mathbf{A}$

$\mathbf{A}(\mathbf{A}+\mathbf{B})$

$A A+A B$
$\mathbf{A}+\mathbf{A B}$
Apply Identity Law
$1 \mathbf{A}=\mathbf{A}$

Apply OR Distributive Law
$\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
Apply Null Law

$$
\mathbf{1}+\mathbf{A}=\mathbf{1}
$$

Apply Identity Law
$1 \mathrm{~A}=\mathrm{A}$
$\mathbf{A 1}+\mathbf{A B}$

$$
\mathbf{A}(\underbrace{1+\mathbf{B}}_{=1})
$$

A(1)
A

Logic Circuit Realization

AND Distributive Law (Proof)

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{C})
$$

Apply OR Distributive Law twice

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

$$
\mathbf{A A}+\mathbf{A C}+\mathbf{B A}+\mathbf{B C}
$$

Idempotent Law

Logic Circuit Realization

A $+\mathbf{B C}$

OR Absorption Law (Proof)

$\mathbf{A}+\overline{\mathbf{A}} \mathbf{B}$

Apply OR Distributive Law
$\mathbf{A}+\mathbf{B C}=(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{C})$

$(\mathbf{A}+\overline{\mathbf{A}})(\mathbf{A}+\mathbf{B})$
Apply Null Law

$$
\mathbf{1}(\mathrm{A}+\mathrm{B})
$$

Apply Identity Law

$$
\mathbf{A}+\mathbf{B}
$$

Example 1

Apply Distributive Law

Apply Commutative Law

Apply Idempotent Law
$\mathbf{A B}(\overline{\mathbf{B}} \mathbf{C}+\mathbf{A C})$ $A B \bar{B} C+A B A C$ $\mathrm{AB} \overline{\mathrm{B}} \mathrm{C}+\mathrm{AABC}$ $\mathrm{AB} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}$
AOC + ABC
Apply Null Law

Apply Identity Law
Apply Inverse Law
(a.k.a. Complement Law)

Example 1

$\mathbf{A B}(\overline{\mathbf{B}} \mathbf{C}+\mathbf{A C})$

Example 1

TRUTH TABLE

ABC

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Example 2

$\overline{\mathbf{A}+\overline{\mathbf{B}}}+\overline{\overline{\mathbf{A}}+\mathbf{B}}$

Apply De Morgan Theorem
 on both terms

$$
\overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}} \overline{\mathbf{B}}
$$

Apply Involution Law

$$
\overline{\mathbf{A}} \overline{\overline{\mathbf{B}}}+\overline{\overline{\mathbf{A}}} \overline{\mathbf{B}}
$$

$$
\overline{\mathbf{A}} \mathbf{B}+\stackrel{\downarrow}{\mathbf{A}} \overline{\mathbf{B}}
$$

Example 2

$\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$

TRUTH TABLE

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

$\overline{\mathbf{A B}}+\mathbf{A B}$

An equivalent realization giving the same truth table

Example 2
 Other equivalent circuits

$\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$

Realization only with NAND Gates

TRUTH TABLE

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

$$
(A+B) \overline{(A B)}
$$

Example 2

Prove

$(\mathbf{A}+\mathbf{B}) \overline{(\mathbf{A B})} \Rightarrow \overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$

Apply De Morgan Theorem

$$
\overline{\mathrm{A} B=\bar{A}+\bar{B}} \quad(\mathbf{A}+\mathbf{B})(\overline{\mathbf{A}}+\overline{\mathbf{B}})
$$

Apply Distribution Law

$$
(\overline{\mathbf{A}}+\overline{\mathbf{B}}) \mathbf{A}+(\overline{\mathbf{A}}+\overline{\mathbf{B}}) \mathbf{B}
$$

Apply Distribution Law

$$
\mathbf{A} \overline{\mathbf{A}}+\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{B} \overline{\mathbf{B}}
$$

Apply Inverse Law

$$
\mathbf{A} \overline{\mathbf{A}}=\mathbf{0}
$$

$$
\mathbf{0}+\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{0}
$$

Apply Identity Law

$$
\mathbf{0}+\mathbf{A}=\mathbf{A}
$$

$$
\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}
$$

Example 2

TRUTH TABLE

$\overline{\mathbf{A}} \mathbf{B}+\mathrm{A} \overline{\mathbf{B}}$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

$$
\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}
$$

We have just designed one possible logic circuit to operate a light with two switches

Example 2

Here is how an electrician implements the wiring of XOR with two-way switches

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Example 2

Here is how an electrician implements the wiring of XNOR with two-way switches

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

