ECE 205 "Electrical and Electronics Circuits"

Spring 2022 – LECTURE 29 MWF – 12:00pm

Prof. Umberto Ravaioli

2062 ECE Building

Quiz 3 – Score Distribution

score / %

Quiz 3 – Statistics

Number of students	292
Mean score	88%
Standard deviation	14%
Median score	95%
Minimum score	28%
Maximum score	100%
Number of 0%	0 (0% of class)
Number of 100%	28 (10% of class)

Lecture 29 – Summary

- **Learning Objectives**
- **1. Power in Transistors**
- 2. Binary logic
- 3. Elementary logic operators
- 4. Boolean algebra

Power in Transistors

The BJT has important applications as a current controlled "valve" or as a "logic" element

We wish to switch ON and OFF power consumption by the load using a BJT instead of a mechanical switch.

BJT as a switch

Power consumed by the transistor is lost (it is part of operations costs)

$$P_{BJT} = 0 W$$

$$P_{Load} = 0 W$$

This is the state in which the transistor switch is OPEN and the load is idle. In reality, there will be some current leakage in the non-ideal p-n junctions consuming minute amount of power, but this is negligible in circuits with a small number of transistors. Now we CLOSE the switch, to let current flow through the load R_L .

Which state of operation should we prefer for the BJT to be ON, in order to minimize the power consumed by the switch itself?

 $P_{Load} = I_C^2 R_L = (5\text{mA})^2 \times 1\text{k}\Omega = 25\text{mW}$

$$P_{BJT} = 0.7 \times 0.5 \text{ m} + 0.2 \times 9.8 \text{ m} = 2.31 \text{ mW}$$

$$P_{Load} = I_C^2 R_L = (9.8 \text{mA})^2 \times 1 \text{k}\Omega = 96.04 \text{mW}$$

BJT is most efficient as a switch in Saturation

Introduction to Digital Logic

Binary Computer Logic

Logic is a science which studies the reasoning needed to reach a conclusion or make a decision.

Computer operations are based on a form of logic which considers two possible states: TRUE or FALSE.

In a computer, these states are encoded into numbers.

For instance:

FALSE = 0 TRUE = 1

Binary Number System

The total number of digits, used to express numbers, is called the "base". We normally use the base-10 (or decimal) number system, with digits from 0 to 9.

Similarly, the complete number system can be constructed with a base of two numbers: 0 and 1. This is the base-2 or "binary" system.

Examples:	DECIMAL	BINARY
	5	101
	13	1101
	24	11000
	100	1100100
		64 32 4

Logic Operations

Binary logic is based on a set of seven elementary logical operations with two inputs and one output. The elements which accomplish these operations are called "Logic Gates". They are represented with the symbols below in a logic circuit.

OUTPUT

TRUTH TABLE

Α	Y
0	1
1	0

AND

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

OUTPUT

NOR

INPUT

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

TRUTH TABLE

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Algebra

Logic operations can be represented with formulas, using a special formalism called Boolean Algebra. The following table shows the Boolean notation.

OPERATOR	BOOLEAN ALGEBRA
NOT	$\mathbf{Y} = \overline{\mathbf{A}}$
AND	$\mathbf{Y} = \mathbf{A} \mathbf{B}$
OR	$\mathbf{Y} = \mathbf{A} + \mathbf{B}$
NAND	$\mathbf{Y} = \overline{\mathbf{A} \ \mathbf{B}}$
NOR	$\mathbf{Y} = \overline{\mathbf{A} + \mathbf{B}}$
XOR	$\mathbf{Y} = \mathbf{A} \oplus \mathbf{B}$
XNOR	$\mathbf{Y} = \overline{\mathbf{A} \oplus \mathbf{B}}$

NOTE: Some authors use A.B for A B and A' for A

Boolean Algebra Simplifications Table

When a logic circuit is designed to obtain the desired behavior, it can be simplified by using the following laws to minimize the number of gates.

LAWS	AND	OR
Identity	$1 \mathbf{A} = \mathbf{A}$	$0 + \mathbf{A} = \mathbf{A}$
Null	$0 \mathbf{A} = 0$	$1 + \mathbf{A} = 1$
Idempotent	$\mathbf{A} \mathbf{A} = \mathbf{A}$	$\mathbf{A} + \mathbf{A} = \mathbf{A}$
Inverse	$\mathbf{A}\overline{\mathbf{A}}=0$	$A + \overline{A} = 1$
Commutative	$\mathbf{A} \mathbf{B} = \mathbf{B} \mathbf{A}$	$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
Associative	(AB)C = A(BC)	$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$
Distributive	$\mathbf{A} + \mathbf{B}\mathbf{C} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})$	A(B + C) = AB + AC
Absorption	$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$	$\mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A}$
		$\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$

Involution Law

AND VERY IMPORTANT:

De Morgan Theorem

- $\mathbf{1)} \quad \overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \, \overline{\mathbf{B}}$
- $\mathbf{2)} \quad \overline{\mathbf{A} \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

Circuit implementation De Morgan Theorem 1) $\overline{A + B} = \overline{A} \overline{B}$

Note

In the practice it is not uncommon to simplify digital circuit layouts by expressing a NOT gate with a "bubble" in a connected element, for example :

as done already in elementary gate definitions:

Circuit implementation De Morgan Theorem 2) $\overline{A B} = \overline{A} + \overline{B}$

AND Absorption Law (Proof) A(A + B)AA + ABA + ABA1 + ABA(1 + B)= 1 A(1)

Apply OR Distributive Law $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$

Apply Idempotent Law A A = A

Apply Identity Law $1 \mathbf{A} = \mathbf{A}$

Apply OR Distributive Law $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$

Apply Null Law

1 + A = 1

Apply Identity Law $1 \mathbf{A} = \mathbf{A}$

Logic Circuit Realization

A

Logic Circuit Realization

OR Absorption Law (Proof) $\mathbf{A} + \mathbf{A} \mathbf{B}$ **Apply OR Distributive Law** $\mathbf{A} + \mathbf{B}\mathbf{C} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})$ $(\mathbf{A} + \mathbf{A})(\mathbf{A} + \mathbf{B})$ **Apply Null Law** 1(A + B)**Apply Identity Law** $\mathbf{A} + \mathbf{B}$

Apply Distributive Law

Apply Commutative Law

Apply Idempotent Law

Apply Inverse Law (a.k.a. Complement Law)

Apply Null Law

Apply Identity Law

AB(BC + AC)ABBC + ABACABBC + AABCABBC + ABCAOC + ABC+ ABC

ABC

TRUTH TABLE

В

С

Υ

Apply De Morgan Theorem on both terms

 $\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \ \overline{\mathbf{B}}$

Apply Involution Law

TRUTH TABLE

This is the Truth Table of the XOR

 $\overline{\mathbf{AB}} + \mathbf{AB}$

An equivalent realization giving the same truth table

Example 2 **Other equivalent circuits TRUTH TABLE** $\overline{A} B + A \overline{B}$ Υ Α В A 0 0 0 0 1 1 1 0 1

This is the Truth Table of the XOR

1

0

Realization only with NAND Gates

Α

B

1

Apply De Morgan Theorem

 $\overline{\mathbf{A} \, \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

 $(\mathbf{A} + \mathbf{B})(\overline{\mathbf{A}} + \overline{\mathbf{B}})$

Apply Distribution Law

$$(\overline{\mathbf{A}} + \overline{\mathbf{B}})\mathbf{A} + (\overline{\mathbf{A}} + \overline{\mathbf{B}})\mathbf{B}$$

Apply Distribution Law

 $A\overline{A} + A\overline{B} + \overline{A}B + B\overline{B}$

Apply Inverse Law

 $\mathbf{A} \, \overline{\mathbf{A}} = \mathbf{0}$

Apply Identity Law $\mathbf{0} + \mathbf{A} = \mathbf{A}$

 $0 + A\overline{B} + \overline{A}B + 0$ $\overline{A}B + A\overline{B}$

TRUTH TABLE

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

 $\mathbf{Y} = \mathbf{A} \oplus \mathbf{B}$

We have just designed one possible logic circuit to operate a light with two switches

TRUTH TABLE

TRUTH TABLE

Example 2

Here is how an electrician implements the wiring of XNOR with two-way switches

