ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 30 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 30 - Summary

Learning Objectives

1. Boolean algebra
2. Logic network minimization practice
3. Universal gates combine to realize any other logic function

Logic Operations

Binary logic is based on a set of seven elementary logical operations with two inputs and one output. The elements which accomplish these operations are called "Logic Gates". They are represented with the symbols below in a logic circuit.

NOT

AND

OR

NAND

Boolean Algebra

Logic operations can be represented with formulas, using a special formalism called Boolean Algebra. The following table shows the Boolean notation.

OPERATOR	BOOLEAN ALGEBRA
NOT	$\mathbf{Y}=\overline{\mathbf{A}}$
AND	$\mathbf{Y}=\mathbf{A ~ B}$
OR	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
NAND	$\mathbf{Y}=\overline{\mathbf{A B}}$
NOR	$\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}$
XOR	$\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}$
XNOR	$\mathbf{Y}=\overline{\mathbf{A} \oplus \mathbf{B}}$

NOTE: Some authors use A.B for A B and A^{\prime} for \bar{A}

Boolean Algebra Simplifications Table

When a logic circuit is designed to obtain the desired behavior, it can be simplified by using the following laws to minimize the number of gates.

LAWS	AND	OR
Identity	$\mathbf{1} \mathbf{A}=\mathbf{A}$	$\mathbf{0}+\mathbf{A}=\mathbf{A}$
Null	$\mathbf{0} \mathbf{A}=\mathbf{0}$	$\mathbf{1}+\mathbf{A}=\mathbf{1}$
Idempotent	$\mathbf{A ~ A}=\mathbf{A}$	$\mathbf{A}+\mathbf{A}=\mathbf{A}$
Inverse (Complement)	$\mathbf{A} \overline{\mathbf{A}}=\mathbf{0}$	$\mathbf{A}+\overline{\mathbf{A}}=\mathbf{1}$
Commutative	$\mathbf{A ~ B}=\mathbf{B} \mathbf{A}$	$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
Associative	$(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$	$(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
Distributive	$\mathbf{A}+\mathbf{B C}=(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{C})$	$\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
Absorption	$\mathbf{A}(\mathbf{A}+\mathbf{B})=\mathbf{A}$	$\mathbf{A}+\mathbf{A B}=\mathbf{A}$
		$\mathbf{A}+\overline{\mathbf{A}} \mathbf{B}=\mathbf{A}+\mathbf{B}$

Involution Law

$$
\overline{\overline{\mathbf{A}}}=\mathbf{A}
$$

AND VERY IMPORTANT:
De Morgan Theorem

$$
\begin{aligned}
& \text { 1) } \overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}} \overline{\mathbf{B}} \\
& \text { 2) } \overline{\mathbf{A B}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}
\end{aligned}
$$

Example 1

Apply Distributive Law

Apply Commutative Law

Apply Idempotent Law
$\mathbf{A B}(\overline{\mathbf{B}} \mathbf{C}+\mathbf{A C})$ $A B \bar{B} C+A B A C$ $A B \bar{B} C+A A B C$ $\mathbf{A B} \overline{\mathrm{B}} \mathbf{C}+\mathrm{ABC}$ AOC + ABC
Apply Null Law

Apply Identity Law

Example 1

$\mathbf{A B}(\overline{\mathbf{B}} \mathbf{C}+\mathbf{A C})$

Example 1

TRUTH TABLE

This is a 3-inputs AND. Only when all inputs are TRUE, the output is TRUE.

Example 2

$\overline{\mathbf{A}+\overline{\mathbf{B}}}+\overline{\overline{\mathbf{A}}+\mathbf{B}}$

Apply De Morgan Theorem
 on both terms

$$
\overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}} \overline{\mathbf{B}}
$$

Apply Involution Law

$$
\overline{\mathbf{A}} \overline{\overline{\mathbf{B}}}+\overline{\overline{\mathbf{A}}} \overline{\mathbf{B}}
$$

$$
\overline{\mathbf{A}} \mathbf{B}+\stackrel{\downarrow}{\mathbf{A}} \overline{\mathbf{B}}
$$

Example 2

$\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$

TRUTH TABLE

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

An equivalent realization giving the same truth table

$$
\overline{\bar{A} \overline{\mathbf{B}}+\mathrm{AB}}
$$

Example $2 \quad$ Other equivalent circuits

TRUTH TABLE

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

Realization only with NAND Gates

$\overline{\overline{(A \overline{(A B)})}} \overline{(B \overline{(A B)})}$
$(\mathrm{A}+\mathrm{B}) \overline{(\mathrm{AB})}$

Example 2

Prove

$(\mathbf{A}+\mathbf{B}) \overline{(\mathbf{A B})} \longmapsto \overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$

Apply De Morgan Theorem

$$
\overline{\mathrm{A}=\bar{A}+\bar{B}} \quad(\mathbf{A}+\mathbf{B})(\overline{\mathbf{A}}+\overline{\mathbf{B}})
$$

Apply Distribution Law

$$
(\overline{\mathbf{A}}+\overline{\mathbf{B}}) \mathbf{A}+(\overline{\mathbf{A}}+\overline{\mathbf{B}}) \mathbf{B}
$$

Apply Distribution Law

$$
\mathbf{A} \overline{\mathbf{A}}+\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{B} \overline{\mathbf{B}}
$$

Apply Inverse Law

$$
\mathbf{A} \overline{\mathbf{A}}=\mathbf{0}
$$

$$
\mathbf{0}+\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}+\mathbf{0}
$$

Apply Identity Law

$$
\mathbf{0}+\mathbf{A}=\mathbf{A}
$$

$$
\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}
$$

Example $2 \quad(\mathbf{A}+\mathbf{B}) \overline{(\mathbf{A B})}$

XOR circuit realization with BJT

$$
V_{C C} \approx 5 \mathrm{~V}
$$

Q1
PN2222A

Example 2

TRUTH TABLE

$\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

This is the Truth Table of the XOR

$$
\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}
$$

We have just designed one possible logic circuit to operate a light with two switches

Example 2

Here is how an electrician implements the wiring of XOR with two-way switches

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Example 2

Here is how an electrician implements the wiring of XNOR with two-way switches

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

Neutral wire

$$
\mathbf{Y}=\overline{\mathbf{A} \oplus \mathbf{B}}
$$

Hot wire

Example 2 XOR

媸 Exas
Instruments
www.ti.com

5 Pin Configuration and Functions

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Example 2 XNOR

TRUTH TABLE

$\mathbf{Y}=\overline{\mathbf{A} \oplus \mathbf{B}}=\mathbf{A B}+\overline{\mathbf{A}} \overline{\mathbf{B}}$

Realization only with NAND Gates

$\overline{\overline{\mathbf{A B}} \overline{\overline{\mathbf{A}}} \overline{\overline{\mathbf{B}}}}$
De Morgan Theorem
$\overline{\overline{\mathbf{A B}}}+\overline{\overline{\mathbf{A}} \overline{\bar{B}}}$
Involution Law
$\mathbf{A B}+\overline{\mathbf{A}} \overline{\mathbf{B}}$

Example 3

$(\mathbf{A}+\overline{\mathbf{B}}+\overline{\mathbf{C}})(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}})$ Apply Distributive Law

$\mathbf{A}(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}})+$ Apply Absorption Law Twice $\overline{\mathbf{B}}(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}})+$ Apply Absorption Law $\overline{\mathbf{C}}(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}}) \quad$ Apply Absorption Law

Apply Inverse Law
$\mathbf{A}+$
$\overline{\mathbf{B}}(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}})+$
$\overline{\mathbf{C}}(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})$

A +

$$
\mathrm{A} \overline{\mathbf{A}}=\mathbf{0}
$$

$$
(\overline{\mathbf{B}} \mathbf{A}+\overline{\mathrm{B}} \mathbf{B}+\overline{\mathbf{B}} \overline{\mathbf{C}})+
$$

$$
(\overline{\mathbf{C}} \mathrm{A}+\overline{\mathrm{C}} \overline{\mathrm{~B}}+\overline{\mathscr{C}} \mathrm{C})
$$

Apply Distributive Law

Example 3

$\mathbf{A}+(\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{B}} \overline{\mathbf{C}})+(\mathbf{A} \overline{\mathbf{C}}+\overline{\mathbf{B}} \overline{\mathbf{C}})$

All OR operations, so parentheses can go away

Idempotent Law $\mathbf{A}+\mathbf{A}=\mathbf{A}$
 $\mathbf{A}+\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{B}} \overline{\mathbf{C}}+\mathbf{A} \overline{\mathbf{C}}+\overline{\mathbf{B}} \overline{\mathbf{C}}$

Absorption Law
$\mathbf{A}+\mathbf{A B}=\mathbf{A}$

Example $3 \quad(\mathbf{A}+\overline{\mathbf{B}}+\overline{\mathbf{C}})(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}})$

Example 3

$\mathrm{A}+\overline{\mathrm{B}} \overline{\mathrm{C}}$

TRUTH TABLE

A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example 4

$\mathbf{B C}+(\mathbf{C} \overline{\mathbf{D}}+\mathbf{A B}) \mathbf{D}$

Apply Distributive Law

BC + (D C $\overline{\mathrm{D}}+\mathrm{DA} \mathbf{B})$

Apply Inverse (Complement) Law

$$
\mathbf{A} \overline{\mathbf{A}}=\mathbf{0}
$$

BC+0C+DAB
Apply Null Law $\quad \mathbf{0} \mathbf{A}=\mathbf{0}$
BC+0 + DA B

Apply Identity Law $\mathbf{0}+\mathbf{A}=\mathbf{A}$
BC+DAB

Example 4

$\mathbf{B C}+(\mathbf{C} \overline{\mathbf{D}}+\mathbf{A B}) \mathbf{D}$

Example 4

TRUTH TABLE

A	B	C	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Example 5

$\overline{A(\overline{B+C})}$

De Morgan Theorem

$$
\overline{\mathbf{A}}+\overline{(\overline{\mathbf{B}+\mathbf{C}})}
$$

Involution Law

$$
\overline{\mathbf{A}}+\mathbf{B}+\mathbf{C}
$$

Example 5

$\mathbf{A}(\overline{\mathbf{B}+\mathbf{C}})$

COMPLETE THE TRUTH TABLE

A	B	C	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$\underset{\text { usserous } \rightarrow}{\rightarrow \mathbf{A}}+\mathbf{B}+\mathbf{C}$

Example 5

$\mathbf{A}(\overline{\mathbf{B}+\mathbf{C}})$

COMPLETE THE TRUTH TABLE

Example 5

$\mathbf{A}(\overline{\mathbf{B}+\mathbf{C}})$

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$\overline{\mathbf{A}}+\mathbf{B}+\mathbf{C}$

Example 5

$$
\begin{aligned}
& \overline{\mathbf{A}}+\mathbf{B}+\mathbf{C} \\
& { }^{\mathrm{A}}-\mathrm{B} \\
& { }_{\mathrm{B}}^{\mathrm{c}} \leftrightarrows \mathrm{D}-\mathrm{D}-
\end{aligned}
$$

Using standard gates to construct other logic functions

NOR and NAND are considered universal gates for the purpose of constructing other ones.

Construct the NOT gate

A	Y
0	1
1	0

Using NOR gates

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Construct the NOT gate

A	Y
0	1
1	0

Using NAND gates

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

Construct the BUFFER gate

A	Y
0	0
1	1

Using NOR gates

Construct the BUFFER gate

A	Y
0	0
1	1

Using NAND gates

Construct the AND gate

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Using NAND gates

Construct the AND gate

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Using NOR gates

Construct the NAND gate

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

Using NOR gates

Construct the OR gate

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Using NOR gates

Construct the OR gate

A OR $P \quad$| A | B | Y |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Using NAND gates

Construct the NOR gate

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Using NAND gates

Logic Gates using BJT's

We consider logic gates made with BJTs connected by resistors (Resistor-Transistor-Logic or RTL). This was the earliest digital logic family for integrated circuits.

While there are much higher performance designs for BJT chips (e.g., Transistor-Transistor-Logic or TTL), RTL is still a good approach to prototype simple logic circuits with discrete components that can handle a fair amount of power in servo-mechanisms.

Intermediate between RTL and TTL, there was the Diode-Transistor-Logic (DTL) where inputs run through $p-n$ junctions.

$V_{B E}<V_{B E}(\mathbf{O N}) ?$

YES

NO

BJT OFF

$$
V_{C E}>V_{C E}(\text { sat }) ?
$$

YES
NO

Consider two cases
Assume $V_{B E}(0 N)=0.7 \mathrm{~V}$

$$
V_{C E}(\text { sat })=0.2 \mathrm{~V}
$$

$$
\begin{aligned}
V_{B E} & <V_{B E}(\mathrm{ON}) \\
V_{0} & =V_{C C}=10 \mathrm{~V}
\end{aligned}
$$

Q_{1} OFF

$I_{B}=\frac{10-0.7}{10 \mathrm{k} \Omega}=0.93 \mathrm{~mA}$
$I_{C}=\beta I_{B}=9.3 \mathrm{~mA} \quad$ Assuming FA mode
$I_{C}(\mathrm{sat})=\frac{10-0.2}{2 \mathrm{k} \Omega}=4.8 \mathrm{~mA}$
Q_{1} SATURATION $V_{0}=0.2 \mathrm{~V}$

Basic principle to design logic gates with BJT:

Two states of operation
(0) LOW V in \rightarrow HIGH V
Q_{1} OFF

10V

For a given technology one has to set reference voltage levels to accept logical states 0 and 1.

$$
\begin{aligned}
& \text { 8V } \\
& \text { 5V----------------------- } \\
& \text { 1V }
\end{aligned}
$$

Basic principle to design logic gates with BJT:
Two states of operation
(0) LOW V in $\rightarrow \mathrm{HIGH}_{0}$ (1)

$$
Q_{1} \text { OFF }
$$

(1) HIGH $V_{\text {in }} \rightarrow$ LOW V_{0} (0)

Q_{1} SATURATION

For a given technology one has to set reference voltage levels to accept logical states 0 and 1.

5V-----------------------

1V

Transistors are like switches

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

$V_{0}=V_{c c}=\mathbf{1 0 V}$ (1)

$V_{\text {in }}$		V_{0}
$\mathbf{0 V}$	(0)	10 V
	1	

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

$$
\begin{equation*}
V_{0}=V_{C C}=10 \mathrm{~V} \tag{1}
\end{equation*}
$$

$V_{\text {in }}$		V_{0}	
0 V	0	10 V	
10 V	1	0.2 V	

$I_{C}(\mathrm{sat})=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA}$
$I_{B}=\frac{10-0.7}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}$
$I_{C}=\beta I_{B}=93 \mathrm{~mA} \gg I_{C}($ sat $)$
$V_{0}=0.2 \mathrm{~V}$
0

On the $I-V$ curves

