ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 31 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 31 - Summary

Learning Objectives

1. Universal gates combine to realize any other logic function
2. Logic gates realized physically with BJT's

Using standard gates to construct other logic functions

NOR and NAND are considered universal gates for the purpose of constructing other ones.

Construct the NOT gate

A	Y
0	1
1	0

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Construct the NOT gate

A	Y
0	1
1	0

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

Construct the BUFFER gate

A	Y
0	0
1	1

Construct the BUFFER gate

| A | Y |
| :---: | :---: | :---: |
| 0 | 0 |
| 1 | 1 |

Construct the AND gate

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Use NAND gates

Construct the AND gate

A	Y	AND	A	B	Y
			0	0	0
B			0	1	0
			1	0	0
			1	1	1

Use NOR gates

Construct the AND gate

AND

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

PROOF

$\mathbf{Y}=\overline{\overline{\mathbf{A}}+\overline{\mathbf{B}}}$
Apply De Morgan Theorem

$$
\overline{\overline{\mathbf{A}}}+\overline{\mathbf{B}}=\overline{\mathbf{A B}}
$$

$$
\mathbf{Y}=\overline{\overline{\mathbf{A B}}}=\mathbf{A} \mathbf{B}
$$

$$
\uparrow
$$

Apply Involution Law

Construct the NAND gate

		A	в	r
-	NAND	0	0	1
		0	1	1
		1	0	1
		1	1	0

Construct the OR gate

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Construct the OR gate

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Construct the OR gate

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

PROOF

$\mathbf{Y}=\overline{\overline{\mathbf{A}} \overline{\mathbf{B}}}$
Apply De Morgan Theorem $\overline{\mathbf{A}} \overline{\mathbf{B}}=\overline{\mathbf{A}+\mathbf{B}}$
$\mathbf{Y}=\underset{\hat{\mathbf{A}+\mathbf{B}}}{\overline{\mathrm{A}}}=\mathbf{A}+\mathbf{B}$
Apply Involution Law

Construct the NOR gate

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Logic Gates using BJT's

We consider logic gates made with BJTs connected by resistors (Resistor-Transistor-Logic or RTL). This was the earliest digital logic family for integrated circuits.

While there are much higher performance designs for BJT chips (e.g., Transistor-Transistor-Logic or TTL), RTL is still a good approach to prototype simple logic circuits with discrete components that can handle a fair amount of power in servo-mechanisms.

Intermediate between RTL and TTL, there was the Diode-Transistor-Logic (DTL) where inputs run through $p-n$ junctions.

$V_{B E}<V_{B E}(\mathbf{O N}) ?$

YES

NO

BJT OFF

$$
V_{C E}>V_{C E}(\text { sat }) \text { ? }
$$

Consider two cases

$$
\begin{aligned}
V_{B E} & <V_{B E}(\mathrm{ON}) \\
V_{0} & =V_{C C}=10 \mathrm{~V}
\end{aligned}
$$

Q_{1} OFF

Consider two cases
Assume $V_{B E}(0 N)=0.7 \mathrm{~V}$

$$
V_{C E}(\text { sat })=0.2 \mathrm{~V}
$$

$$
\begin{aligned}
V_{B E} & <V_{B E}(\mathrm{ON}) \\
V_{0} & =V_{C C}=10 \mathrm{~V}
\end{aligned}
$$

Q_{1} OFF

$I_{B}=\frac{10-0.7}{10 \mathrm{k} \Omega}=0.93 \mathrm{~mA}$
$I_{C}=\beta I_{B}=9.3 \mathrm{~mA} \quad$ Assuming FA mode
$I_{C}(\mathrm{sat})=\frac{10-0.2}{2 \mathrm{k} \Omega}=4.8 \mathrm{~mA}$
Q_{1} SATURATION $V_{0}=0.2 \mathrm{~V}$

Basic principle to design logic gates with BJT:

Two states of operation
(0) LOW V in \rightarrow HIGH V
Q_{1} OFF

10V

For a given technology one has to set reference voltage levels to accept logical states 0 and 1.

Basic principle to design logic gates with BJT:
Two states of operation
(0) LOW V in $\rightarrow \mathrm{HIGH}_{0}$ (1)

$$
Q_{1} \text { OFF }
$$

(1) HIGH $V_{\text {in }} \rightarrow$ LOW V_{0} (0)

Q_{1} SATURATION

For a given technology one has to set reference voltage levels to accept logical states 0 and 1.

5V-----------------------

1V

Transistors are like switches

Basic Inverter (NOT) implementation

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

$V_{0}=V_{c c}=\mathbf{1 0 V}$ (1)

$V_{\text {in }}$		V_{0}
$\mathbf{0 V}$	(0)	10 V
	1	

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

$$
\begin{equation*}
V_{0}=V_{C C}=10 \mathrm{~V} \tag{1}
\end{equation*}
$$

$V_{\text {in }}$		V_{0}	
0 V	0	10 V	
10 V	1	0.2 V	

$I_{C}(\mathrm{sat})=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA}$
$I_{B}=\frac{10-0.7}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}$
$I_{C}=\beta I_{B}=93 \mathrm{~mA} \gg I_{C}($ sat $)$
$V_{0}=0.2 \mathrm{~V}$
0

On the $I-V$ curves

BJT inverter circuit

Another example, realized with $\pm V_{C C}$ bias

Example: Realization of inverter circuit with n-p-n BJT (positive logic)

Base circuit
Node Voltage method

Input voltage	$V_{\text {in }}=\mathbf{0 . 2 ~ V}$

Assume $\quad I_{B}=\mathbf{0 ~ V}$
Thevenin equivalent source:
Node voltage at
B

$$
\frac{V_{B}-0.2}{15 k}+\frac{V_{B}-(-12)}{100 k}=0
$$

$$
20 \mathrm{k} V_{B}-4 \mathrm{k}+3 \mathrm{k} V_{B}+36 \mathrm{k}=0
$$

$$
V_{B}=-1.391 \mathrm{~V}
$$

The base p - n junction is OFF and as a consequence the transistor is in CUT-OFF mode. Base and collector currents are zero and

$$
V_{\text {out }}=V_{C C}=12 \mathrm{~V}
$$

Another way to solve the base circuit

$$
\begin{aligned}
& \begin{array}{l|l}
\text { Input voltage } & V_{\text {in }}=\mathbf{0 . 2 ~ V}
\end{array} \\
& \text { Assume } I_{B}=\mathbf{0 V}
\end{aligned}
$$

Thevenin equivalent source:
Superposition of two voltage divider results

$$
+V_{C c}=12 \mathrm{~V}
$$

$V_{B}=-12 \times \frac{15}{100+15}+0.2 \times \frac{100}{100+15}$
$=-1.391 \mathrm{~V}$

Base circuit

Input voltage

$$
V_{i n}=12 \mathrm{~V}
$$

Thevenin equivalent source:

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{aligned}
$$

Node voltage at B in open circuit

$$
\frac{V_{B}-12}{15 \mathrm{k}}+\frac{V_{B}-(-12)}{100 \mathrm{k}}=0
$$

$$
20 \mathrm{k} V_{B}-240 \mathrm{k}+3 \mathrm{k} V_{B}+36 \mathrm{k}=0
$$

$$
V_{B}=8.87 \mathrm{~V}
$$

$13 \mathrm{k} \Omega$

$R_{\text {eff }}=\left(\frac{1}{15 k}+\frac{1}{100 \mathrm{k}}\right)^{-1}=13.04 \mathrm{k} \Omega$

$$
I_{B}=\frac{8.87-0.7}{13.04 \mathrm{k}} \approx 0.63 \mathrm{~mA}
$$

Collector circuit
Input voltage

$$
\begin{aligned}
& V_{i n}=12 \mathrm{~V} \\
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& I_{B} \approx 0.63 \mathrm{~mA} \\
& \hline
\end{aligned}
$$

Assuming Forward-Active mode

$$
I_{C}=\beta I_{B}=19.9 \mathrm{~mA}
$$

Check for saturation

$$
\begin{aligned}
I_{C}(\text { sat }) & =\frac{V_{C C}-V_{C E}(\text { sat })}{R_{C}} \\
& =\frac{11.8}{2.2 \mathrm{k}}=5.36 \mathrm{~mA} \\
I_{B}(\text { sat }) & =I_{C} / \beta=0.179 \mathrm{~mA}
\end{aligned}
$$

The base current exceeds the value at onset of saturation

Indeed, this circuit behaves like a logic inverter

$V_{\text {in }}$	$V_{\text {out }}$
0.2 V	12 V
12 V	0.2 V

$$
+V_{C c}=12 \mathrm{~V}
$$

$$
\sum_{R_{C}=2.2 \mathrm{k} \Omega}
$$

true
$R_{1}=15 \mathrm{k} \Omega$

FALSE

$$
R_{2}=100 \mathrm{k} \Omega
$$

$$
\oint^{1} E \quad \beta=30
$$

$$
V_{R}=-12 \mathrm{~V}
$$

Simple logic gate design with BJT’s

$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade
$V_{C E}($ sat $)=0.2 \mathrm{~V}$

$$
\beta=10
$$

$V_{\text {in }}$		Q_{1}	$V_{C 1}$		
0 V	0	OFF	$10 \mathrm{~V}^{2}$		
10 V	1	SAT	0.2 V	0	

\rightarrow See next
$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade $V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}$ $\rho^{+V_{C C}=10 \mathrm{~V}}$
$\beta=10$
$\mathrm{Q}_{1}=\mathrm{OFF}$

$$
V_{C 1}=5.35 \mathrm{~V}
$$

$$
\begin{array}{lr}
V_{C C}-\left(R_{C 1}+R_{B 2}\right) I_{B 2}-V_{B E}(0 \mathrm{~N})=0 \\
10-2 \mathrm{k} \Omega I_{B 2}-0.7=0 & \\
I_{B 2}=9.3 / 2 \mathrm{k}=4.65 \mathrm{~mA} & I_{C 2}(\mathrm{sa}
\end{array}
$$

Assuming forward-active mode
$I_{C 2}=46.5 \mathrm{~mA}$
$\mathbf{Q}_{2}=$ SATURATION
$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade

$$
V_{C E}(\text { sat })=0.2 \mathrm{~V}
$$

$$
\beta=10
$$

$V_{\text {in }}$		Q_{1}	$V_{C 1}$	Q_{2}
V_{0}				
0 V	(0)	OFF	$5.35 \mathrm{~V}(1)$	SAT
10 V	0.2 V	(0)		
1	SAT	$0.2 \mathrm{~V}(0)$	OFF	10 V

Two NOT gates in series

OR Logic Gate

$$
\begin{aligned}
V_{B E}(\mathrm{ON}) & =0.7 \mathrm{~V} \\
V_{C E}(\mathrm{sat}) & =0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

OR

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

$$
R_{1}=5 \mathrm{k} \Omega
$$

$$
\begin{aligned}
& \frac{V_{Q 1}-V_{A}}{5 \mathrm{k}}+\frac{V_{Q 1}-V_{B}}{5 \mathrm{k}}=0 \\
& V_{Q 1}=\frac{V_{A}+V_{B}}{2} \\
& V_{A}=0 \quad V_{B}=0 \\
& V_{Q 1}=0 \\
& V_{A}=10 \mathrm{~V} \quad V_{B}=0 \\
& V_{Q 1}=5 \mathrm{~V} \\
& V_{A}=0 \quad V_{B}=10 \mathrm{~V} \\
& V_{Q 1}=5 \mathrm{~V} \\
& V_{A}=10 \mathrm{~V} \quad V_{B}=10 \mathrm{~V} \\
& V_{Q 1}=10 \mathrm{~V}
\end{aligned}
$$

Equivalent base circuit for Q_{1}

OR Logic Gate

$$
V_{Q 1}=0
$$

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}
\end{aligned}
$$

$$
I_{C}(\mathrm{sat})=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA}
$$

$\beta=10$

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

Q_{1} OFF

$I_{B}=\frac{10-0.7}{1 \mathrm{k} \Omega+5 \mathrm{k} \Omega}=1.55 \mathrm{~mA}$
$I_{C}=\beta I_{B}=15.5 \mathrm{~mA}>I_{C}(\mathrm{sat})$

$$
V_{0}=0.2 \mathrm{~V}
$$

Q_{2} SATURATION

$$
I_{C}(\mathrm{sat})=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA}
$$

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}
\end{aligned}
$$

$\beta=10$

Q_{1} SATURATION
$V_{1}=V_{C E}(\mathbf{s a t})$
$=0.2 \mathrm{~V}<V_{B E}(0 \mathrm{~N})$
$I_{B}=0$
$I_{C}=0$
$V_{0}=10 \mathrm{~V}$
Q_{2} OFF

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

R

V_{A}		V_{B}		Q_{1}	Q_{2}	V_{0}	
OV	0	0 V	0	OFF	SAT	0.2 V	0
OV	0	10 V	1	SAT	OFF	10 V	1
10 V	1	0 V	0	SAT	OFF	10 V	1
10 V	1	10 V	1	SAT	OFF	10 V	1

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& 9 \quad 9 \\
& \hdashline=\mathbf{k} \boldsymbol{\Omega}
\end{aligned}
$$

$$
\beta=10
$$

$$
R_{2}=5 k \Omega
$$

$$
+V_{C C}=10 \mathrm{~V}
$$

$$
3=1 \mathrm{k} \Omega
$$

$$
R_{4}=5 k \Omega
$$

This is actually a NOR gate
This is an inverter gate

V_{A}		V_{B}		Q_{1}	V_{x}	
VV	0	0 V	$(0$	OFF	10 V	(1)
0 V	0	10 V	1	SAT	0.2 V	0
10 V	1	0 V	0	SAT	0.2 V	0
10 V	1	10 V	1	SAT	0.2 V	0

After connection to $\mathbf{Q}_{\mathbf{2}}$

$$
V_{x}=7.75 \mathrm{~V}
$$

Other NOR implementations

$$
V_{C C}=10 \mathrm{~V}
$$

V_{A}		V_{B}		Q_{1}	Q_{2}	V_{0}	
OV	0	OV (0)	OFF	OFF	10 V	(1)	
OV	0	10 V	1	OFF	SAT	0.2 V	
10 V	1	OV	0	SAT	OFF	0.2 V	
10 V	1	10 V	1	SAT	SAT	0.2 V	

RTL-based NOR circuits were used in the Apollo Guidance Computer that went to the moon (the first computer using silicon integrated circuits)

Silicon integrated circuit with two 3-inputs NOR gates, used in the Apollo Guidance computer.

THIS SCHEMATIC IS REPRESENTATIVE OF THE
ELECTRICAL CHARACTERISTICS ONLY. THE
PHYSICAL CIRCUITRY IS ENTIRELY CONTAINED

MOS Technology
 6502 8-bit microprocessor (1975)
 3510 transistors (MOSFET)

CPU of:

- Apple II
- Atari 400 \& 800
- BBC Micro
- Commodore PET \& VIC-20

Photo: © Antoine Bercovici

Semiconductor chips in consumer products have billions of transistors

Apple M2 Max has 67 billion MOSFETs (2023) Apple M2 Ultra ($\mathbf{2 \times M}$ 2 Max) has 134 billion MOSFETs

AMD's MI300X has 153 billion MOSFETs (2023)
The Wafer Scale Engine 2 (WS2) deep-learning processor by Cerebras has 2.6 trillion MOSFETs

Cerebras WSE-2

$46,225 \mathrm{~mm}^{2}$ Silicon
2.6 Trillion transistors

850,000 cores

Memory bandwidth = 20 Petabytes/sec
https://www.cerebras.net/product-chip/

Moore's Law - The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are linked to Moore's law.


```
1,000
```


MOSFET Technology Metal-Oxide-Semiconductor Field-Effect Transistor

- Estimated number of grains of sand on Earth
$\approx 7.5 \times 10^{18}$ (seven quintillion five hundred quadrillions grains)
- Estimated number of transistors fabricated since 1947
$\approx 2.9 \times 10^{21}$ (2.0 sextillion transistors) [2014]
$\approx 1.3 \times 10^{22}$ (13 sextillion transistors) [2022]
- Estimated number of stars in the Universe visible with the Hubble telescope (2003)
- Estimated number of H_{20} molecules in 10 drops of water
$\approx 7.0 \times 10^{22}$ (70 sextillions)

Two transistors in series

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

Transistors are like switches

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

$$
V_{A}=V_{B}=0 \mathrm{~V}
$$

$$
+V_{C c}=10 \mathrm{~V}
$$

$$
\sum_{R_{C}}
$$

$$
\begin{array}{|ll|}
\hline V_{A}=\mathbf{0 V} & \begin{array}{|l}
V_{A}=10 \mathrm{~V} \\
\hline V_{B}=10 \mathrm{~V} \\
\hline
\end{array} \\
V_{B}=\mathbf{0 V} \\
\hline
\end{array}
$$

$$
+V_{C c}=10 \mathrm{~V}
$$

$$
\sum_{R_{C}}
$$

$$
+V_{C C}=10 \mathrm{~V}
$$

$$
\left\{\begin{array}{l}
R_{C} \\
v_{0}=10 \mathrm{~V}
\end{array}\right.
$$

$$
\begin{array}{ll}
Q_{1} & \begin{array}{l}
\text { Both OFF } \\
\\
\text { No path to } \\
\text { ground for }
\end{array} \\
Q_{2} & \begin{array}{l}
\text { current in } \\
\text { base-emitter } \\
\text { junction of Q1 }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

NAND

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

V_{A}		V_{B}		Q_{1}	Q_{2}	V_{0}	
OV	0	OV	$(0$	OFF	OFF	10 V	1
OV	0	$10 V$	1	OFF	SAT	10 V	1
10 V	1	OV	$(0$	OFF	OFF	10 V	1
10 V	1	10 V	1	SAT	SAT	0.4 V	$(0$

NAND implementation with other BJT technologies

Direct-Coupled-Transistor-Logic
DCTL

Transistor-Transistor-Logic

