ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 32
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 32 - Summary

Learning Objectives

1. Logic gates realized physically with BJT's

Basic Inverter (NOT) implementation

Transistors are like switches

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

$V_{0}=V_{c c}=\mathbf{1 0 v}$ (1)

$V_{\text {in }}$		V_{0}
$\mathbf{0 V}$	(0)	10 V
	1	

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

$$
\begin{equation*}
V_{0}=V_{C C}=10 \mathrm{~V} \tag{1}
\end{equation*}
$$

$V_{\text {in }}$		V_{0}	
0 V	0	10 V	
10 V	1	0.2 V	

$I_{C}(\mathrm{sat})=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA}$
$I_{B}=\frac{10-0.7}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}$
$I_{C}=\beta I_{B}=93 \mathrm{~mA} \gg I_{C}($ sat $)$
$V_{0}=0.2 \mathrm{~V}$
0

On the $I-V$ curves

Two transistors in cascade

Buffer implementation

Two NOT gates in series

$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Single BJT Inverter
$V_{C E}($ sat $)=0.2 \mathrm{~V}$
$\beta=10$

$V_{\text {in }}$		Q_{1}	$V_{C 1}$	
0 V (0)	OFF	10 V (1)		
10 V (1)	SAT	$0.2 \mathrm{~V}(0)$		

$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade
$V_{C E}($ sat $)=0.2 \mathrm{~V}$

$$
\beta=10
$$

$V_{\text {in }}$		Q_{1}	$V_{C 1}$		
0 V	0	OFF	$10 \mathrm{~V}^{2}$		
10 V	1	SAT	0.2 V	0	

\rightarrow See next
$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
$V_{C E}($ sat $)=0.2 \mathrm{~V}$
$\beta=10$
$\mathrm{Q}_{1}=\mathrm{OFF}$

Two BJT's in cascade

$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade $V_{C E}($ sat $)=0.2 \mathrm{~V}$
$0^{+V_{C C}=10 \mathrm{~V}}$

$$
\beta=10
$$

$Q_{1}=O F F$

$$
V_{C 1}=5.35 \mathrm{~V}
$$

$V_{C C}-\left(R_{C 1}+R_{B 2}\right) I_{B 2}-V_{B E}(\mathrm{ON})=0$
$10-2 \mathrm{k} \Omega I_{B 2}-0.7=0$
$I_{B 2}=9.3 / 2 \mathrm{k}=4.65 \mathrm{~mA}$
Assuming forward-active mode
$I_{C 2}=46.5 \mathrm{~mA}$
$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade $V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}$ $\rho^{+V_{C C}=10 \mathrm{~V}}$
$\beta=10$
$\mathrm{Q}_{1}=\mathrm{OFF}$

$$
V_{C 1}=5.35 \mathrm{~V}
$$

$$
V_{C C}-\left(R_{C 1}+R_{B 2}\right) I_{B 2}-V_{B E}(\mathbf{O N})=0
$$

$$
10-2 \mathrm{k} \Omega I_{B 2}-0.7=0
$$

$$
I_{B 2}=9.3 / 2 \mathrm{k}=4.65 \mathrm{~mA}
$$

Assuming forward-active mode
$I_{C 2}=46.5 \mathrm{~mA}$
$\mathbf{Q}_{2}=$ SATURATION
$V_{B E}(\mathrm{ON})=0.7 \mathrm{~V}$
Two BJT's in cascade

$$
V_{C E}(\text { sat })=0.2 \mathrm{~V}
$$

$$
\beta=10
$$

$V_{\text {in }}$		Q_{1}	$V_{C 1}$	Q_{2}
V_{0}				
0 V	(0)	OFF	$5.35 \mathrm{~V}(1)$	SAT
10 V	0.2 V	(0)		
1	SAT	$0.2 \mathrm{~V}(0)$	OFF	10 V

Two NOT gates in series

Two transistors in cascade

OR gate implementation

OR Logic Gate

$$
\begin{aligned}
V_{B E}(\mathrm{ON}) & =0.7 \mathrm{~V} \\
V_{C E}(\mathrm{sat}) & =0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

OR

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

$$
R_{1}=5 \mathrm{k} \Omega
$$

$$
\begin{aligned}
& \frac{V_{Q 1}-V_{A}}{5 \mathrm{k}}+\frac{V_{Q 1}-V_{B}}{5 \mathrm{k}}=0 \\
& V_{Q 1}=\frac{V_{A}+V_{B}}{2} \\
& \hline V_{A}=0 \quad V_{B}=0 \\
& V_{Q 1}=0 \\
& V_{A}=10 \mathrm{~V} \quad V_{B}=0 \\
& V_{Q 1}=5 \mathrm{~V} \\
& V_{A}=0 \quad V_{B}=10 \mathrm{~V} \\
& V_{Q 1}=5 \mathrm{~V} \\
& V_{A}=10 \mathrm{~V} \quad V_{B}=10 \mathrm{~V} \\
& V_{Q 1}=10 \mathrm{~V}
\end{aligned}
$$

Thevenin Equivalent base circuit for \boldsymbol{Q}_{1}

OR Logic Gate

$$
V_{Q 1}=0
$$

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}
\end{aligned}
$$

$$
I_{C}(\mathrm{sat})=\frac{10-0.2}{1 \mathrm{k} \Omega}=9.8 \mathrm{~mA}
$$

$\beta=10$

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

Q_{1} OFF

$I_{B}=\frac{10-0.7}{1 \mathrm{k} \Omega+5 \mathrm{k} \Omega}=1.55 \mathrm{~mA}$
$I_{C}=\beta I_{B}=15.5 \mathrm{~mA}>I_{C}(\mathrm{sat})$

$$
V_{0}=0.2 \mathrm{~V}
$$

Q_{2} SATURATION

OR Logic Gate

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V}
\end{aligned}
$$

$\beta=10$

Q_{1} SATURATION
$V_{1}=V_{C E}(\mathbf{s a t})$
$=0.2 \mathrm{~V}<V_{B E}(0 \mathrm{~N})$
$I_{B}=0$
$I_{C}=0$
$V_{0}=10 \mathrm{~V}$
Q_{2} OFF

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

R

V_{A}		V_{B}		Q_{1}	Q_{2}	V_{0}	
OV	0	0 V	0	OFF	SAT	0.2 V	0
OV	0	10 V	1	SAT	OFF	10 V	1
10 V	1	0 V	0	SAT	OFF	10 V	1
10 V	1	10 V	1	SAT	OFF	10 V	1

$$
+V_{C C}=10 \mathrm{~V}
$$

$$
\begin{aligned}
V_{B E}(\mathrm{ON}) & =0.7 \mathrm{~V} \\
V_{C E}(\text { sat }) & =0.2 \mathrm{~V}
\end{aligned}
$$

\qquad

$$
\beta=10 \quad R_{1}=5 \mathrm{k} \Omega
$$

$$
V_{A} \circ \sqrt{M}
$$

$$
R_{2}=5 \mathbf{k} \boldsymbol{\Omega}
$$

Other NOR implementations

$$
V_{C C}=10 \mathrm{~V}
$$

V_{A}		V_{B}		Q_{1}	Q_{2}	V_{0}	
OV	0	OV (0)	OFF	OFF	10 V	(1)	
OV	0	10 V	1	OFF	SAT	0.2 V	
10 V	1	OV	0	SAT	OFF	0.2 V	
10 V	1	10 V	1	SAT	SAT	0.2 V	

RTL-based NOR circuits were used in the Apollo Guidance Computer that went to the moon (the first computer using silicon integrated circuits)

Silicon integrated circuit with two 3-inputs NOR gates, used in the Apollo Guidance computer.
computerhistory.org/blog/silicon-chips-take-man-to-the-moon/

THIS SCHEMATIC IS REPRESENTATIVE OF THE
ELECTRICAL CHARACTERISTICS ONLY. THE
PHYSICAL CIRCUITRY IS ENTIRELY CONTAINED

MOS Technology
 6502 8-bit microprocessor (1975)
 3510 transistors (MOSFET)

CPU of:

- Apple II
- Atari 400 \& 800
- BBC Micro
- Commodore PET \& VIC-20

Photo: © Antoine Bercovici

Semiconductor chips in consumer products have now billions of transistors

Apple M2 Max has 67 billion MOSFETs (2023) Apple M2 Ultra ($2 \times$ M2 Max) has 134 billion MOSFETs

AMD's MI300X has 153 billion MOSFETs (2023)
The Wafer Scale Engine 2 (WS2) deep-learning processor by Cerebras has 2.6 trillion MOSFETs

Cerebras WSE-2

$46,225 \mathrm{~mm}^{2}$ Silicon
2.6 Trillion transistors

850,000 cores

Memory bandwidth = 20 Petabytes/sec
https://www.cerebras.net/product-chip/

Moore's Law - The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are linked to Moore's law.


```
1,000
```


- Estimated number of grains of sand on Earth
$\approx 7.5 \times 10^{18}$ (seven quintillion five hundred quadrillions grains)
- Estimated number of transistors fabricated since 1947
$\approx 2.9 \times 10^{21}$ (2.0 sextillion transistors) [2014]
$\approx 1.3 \times 10^{22}$ (13 sextillion transistors) [2022]
- Estimated number of stars in the Universe visible with the Hubble telescope (2003)
- Estimated number of H_{20} molecules in 10 drops of water
$\approx 7.0 \times 10^{22}$ (70 sextillions)

Two transistors in series

NAND gate implementation

Two transistors in series

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\mathrm{sat})=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{aligned}
$$

$$
\beta=10
$$

$$
V_{A}=V_{B}=\mathbf{0 V}
$$

$$
V_{A}=0 \mathrm{~V}
$$

$$
V_{B}=10 \mathrm{~V}
$$

$$
+V_{c c_{0}}=10 \mathrm{~V}
$$

$$
\sum_{R_{C}}
$$

$$
V_{A}=10 \mathrm{~V}
$$

$$
V_{B}=0 \mathrm{~V}
$$

$+V_{C C}=10 \mathrm{~V}$

$$
V_{A}=V_{B}=10 \mathrm{~V}
$$

$$
\sum_{R_{C}}^{+V_{C C}}
$$

$$
\begin{cases}V_{0}=10 \mathrm{~V} \\
\hline \mathbf{Q}_{1} & \text { Both OFF } \\
& \begin{array}{l}
\text { No path to } \\
\text { ground for }
\end{array} \\
\text { current in }\end{cases}
$$

current in
base-emitter
junction of Q1

$$
\begin{aligned}
& V_{0}=0.4 \mathrm{~V} \\
& 1 \\
& 2 \\
& 26
\end{aligned}
$$

$$
\begin{aligned}
& V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \\
& V_{C E}(\text { sat })=0.2 \mathrm{~V} \\
& \beta=10
\end{aligned}
$$

NAND

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

V_{A}		V_{B}		Q_{1}	Q_{2}	V_{0}	
OV	0	OV	$(0$	OFF	OFF	10 V	1
OV	0	$10 V$	1	OFF	SAT	10 V	1
10 V	1	OV	$(0$	OFF	OFF	10 V	1
10 V	1	10 V	1	SAT	SAT	0.4 V	$(0$

NAND implementation with other BJT technologies

Direct-Coupled-Transistor-Logic
DCTL

Transistor-Transistor-Logic

Alternative circuits - What logic gates are these?

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\text { sat })=0.2 \mathrm{~V} \quad \beta=10
$$

Alternative circuits - What logic gates are these?

$$
V_{B E}(\mathrm{ON})=0.7 \mathrm{~V} \quad V_{C E}(\mathrm{sat})=0.2 \mathrm{~V} \quad \beta=10
$$

From Lecture 30

$(\mathbf{A}+\mathbf{B}) \overline{(\mathbf{A B})}$

XOR circuit realization with BJT

OUTPUT: LED LIGHT with integrated current limiting resistor
$R 9$

http://sullystationtechnologies.com/npnxorgate.html

Another Example

${ }_{B}^{\mathrm{A}} \mathrm{H}_{\mathrm{c}}^{0} \mathrm{D}_{0-r} \quad Y=\overline{\overline{\mathbf{A B}}+\mathbf{C}}$

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

What if we transform the circuit?

$$
\text { TOTAL = } 4 \text { BJT’s }
$$

NOT = 1 BJT
Two 2-inputs NAND's = 4 BJT's
Two NOT's to obtain AND's = 2 BJT

$\mathbf{Y}=\overline{\overline{\mathbf{A B}}+\mathbf{C}}$

Using De Morgan's theorem
$\mathbf{Y}=\mathbf{A B} \overline{\mathbf{C}}$

NOT = 1 BJT
One 3-inputs NAND = 3 BJT's NOT to obtain AND = 1 BJT

$$
\text { TOTAL = } 7 \text { BJT's }
$$

