ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 33
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 33 - Summary

Learning Objectives

1. Frequency Response of Circuits
2. Low-Pass Passive Filters

Quiz 4 Reminder

- April 22-24 (next week)
- 5 Questions:
- BJT Analysis
- 2 Questions on $n-p-n$
- 1 Question on $p-n-p$
- 1 Question on boolean expression reduction
- 1 Question on BJT logic circuits
- Covering from Lectures 24 to Lecture 32

From Lecture 30

$(\mathbf{A}+\mathbf{B}) \overline{(\mathbf{A B})}$

XOR circuit realization with BJT

OUTPUT: LED LIGHT with integrated current limiting resistor
$R 9$

Minimal implementation

$V_{B E}(\mathrm{ON}) \approx 0.6 \mathrm{~V}$
$V_{C E}(\mathrm{sat}) \approx 0.3 \mathrm{~V}$
General Purpose PN2222A BJT $\beta \approx 100$ to 300

$$
+V_{C C}=5 \mathrm{~V}
$$

AND

$$
\begin{aligned}
& V_{B E}(\mathrm{ON}) \approx 0.6 \mathrm{~V} \\
& V_{C E}(\text { sat }) \approx 0.3 \mathrm{~V}
\end{aligned}
$$

$$
\beta=100
$$

$$
V_{A}=V_{B}=0 \mathrm{~V}
$$

$$
V_{A}=0 \mathrm{~V}
$$

$$
V_{B}=5 \mathrm{~V}
$$

$$
+V_{C c}=5 \mathrm{~V}
$$

$$
+V_{c c}=5 \mathrm{~V}
$$

5V

$$
\rangle_{0}^{Q_{1}}
$$

$$
\mathbf{Q}_{1}
$$

$$
\left\{\begin{array}{l}
\boldsymbol{V}_{0}=0 \mathrm{~V} \\
R_{C} \\
0
\end{array}\right.
$$

Another Example

${ }_{B}^{\mathrm{A}} \mathrm{H}_{\mathrm{c}}^{0} \mathrm{D}_{0-r} \quad \mathrm{Y}=\overline{\overline{\mathbf{A B}}+\mathbf{C}}$

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

What if we transform the circuit?

$$
\text { TOTAL = } 4 \text { BJT’s }
$$

NOT = 1 BJT
Two 2-inputs NAND's = 4 BJT's
Two NOT's to obtain AND's = 2 BJT

$\mathbf{Y}=\overline{\overline{\mathbf{A B}}+\mathbf{C}}$!

Using De Morgan's theorem
$\mathbf{Y}=\mathbf{A B} \overline{\mathbf{C}}$

NOT = 1 BJT
One 3-inputs NAND = 3 BJT's NOT to obtain AND = 1 BJT

$$
\text { TOTAL = } 7 \text { BJT's }
$$

$$
\text { TOTAL = } 5 \text { BJT’s }
$$

Frequency response of circuits

Frequency response

Until now we have considered the following forms of circuit excitation:

- Constant source (voltage or current)

- Sinusoidal source (voltage or current)

- Constant source (voltage or current)

$$
\begin{aligned}
& V(t)=K[\mathrm{~V}]=K \cos (0 t) \\
& \uparrow \\
& \omega=0 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

It can be interpreted as a signal with zero frequency

- Sinusoidal source (voltage or current)

This is a signal with a single frequency component f_{0}

Representation in the frequency domain

Signal with several frequencies

$$
V(t)=\cos \left(\omega_{0} t\right)+\frac{1}{2} \cos \left(2 \omega_{0} t\right)+\frac{1}{3} \cos \left(3 \omega_{0} t\right)
$$

Signal with several frequencies

$$
V(t)=\cos \left(\omega_{0} t\right)+\frac{1}{2} \cos \left(2 \omega_{0} t\right)+\frac{1}{3} \cos \left(3 \omega_{0} t\right)
$$

Signal with several frequencies

$$
V(t)=\cos \left(\omega_{0} t\right)+\frac{1}{2} \cos \left(2 \omega_{0} t\right)+\frac{1}{3} \cos \left(3 \omega_{0} t\right)
$$

$V(t)=\cos \left(\omega_{0} t\right)+\frac{1}{2} \cos \left(2 \omega_{0} t+\frac{\pi}{3}\right)+\frac{1}{3} \cos \left(3 \omega_{0} t-\frac{\pi}{3}\right)$

$V(t)=\cos \left(\omega_{0} t\right)+\frac{1}{2} \cos \left(2 \omega_{0} t+\frac{\pi}{3}\right)+\frac{1}{3} \cos \left(3 \omega_{0} t-\frac{\pi}{3}\right)$

Ten seconds of music and its frequency "spectrum"

Excerpt from: Dmitri Shostakovich, Concerto No. 1 for piano, trumpet and strings in C minor, Op. 35 (ORFEO-C220011)

Fourier transform

Converts a time domain signal $V(t)$ to a frequency domain signal $\widetilde{\mathrm{V}}(\boldsymbol{\omega})$

$$
\widetilde{\mathrm{V}}(\omega)=\int_{-\infty}^{\infty} V(t) e^{-\mathrm{j} \omega t} d t
$$

In general, the Fourier Transform is a complex function

Anti-Transform

$$
V(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{V}(\omega) e^{j \omega t} d \omega
$$

Filter

A circuit which manipulates a signal, typically by changing the relative amplitudes of the frequency components.

We will consider filters (systems) which are "single-input" and "single-output," consisting of "linear" and "time-invariant" circuits.

Transfer Function

The relationship linking the frequency-dependent input and output

$$
\widetilde{\mathrm{V}}_{\text {out }}(\omega)=\mathbf{H}(\omega) \widetilde{V}_{\text {in }}(\omega)
$$

$$
H(\omega)=\frac{\widetilde{V}_{\text {out }}(\omega)}{\widetilde{V}_{\text {in }}(\omega)}=|\mathbf{H}(\omega)| \angle \theta(\omega)
$$

Transfer
Function

| Magnitude
 Response |
| :---: | | Phase |
| :---: |
| Response |

1 - Voltage Divider

The voltage divider is a very simple filter

$$
\begin{aligned}
& \widetilde{\mathrm{V}}_{\text {out }}(\omega)=\frac{1}{2} \widetilde{V}_{\text {in }}(\omega) \\
& H(\omega)=|H(\omega)|=\frac{1}{2}
\end{aligned}
$$

$$
|\mathbf{H}(\boldsymbol{\omega})|
$$

Transfer Function

$$
\begin{aligned}
& \text { This circuit works as } \\
& \text { an "attenuator" } \\
& \boldsymbol{\omega}
\end{aligned}
$$

Behavior of Reactive Circuit Elements

Capacitor

Behavior of Reactive Circuit Elements

Inductor

$$
\left|z_{L}\right|
$$

2 - Low Pass RC filter

RC filter
(${ }^{\text {st }}$ order)

Let the input be a phasor of the form

$$
\begin{aligned}
& \widetilde{\mathrm{V}}_{\text {in }}(\omega)=\mathrm{V}_{I} \angle 0^{\circ} \\
& \widetilde{\mathrm{V}}_{\text {out }}(\omega)=\mathrm{V}_{I} \angle 0^{\circ} \frac{1 / \mathrm{j} \omega C}{R+\mathbf{1} / \mathbf{j} \omega C}=\overbrace{\mathrm{V}_{I} \angle 0^{\circ}}^{\widetilde{\mathrm{V}}_{\text {in }}(\omega)} \frac{1}{1+\mathrm{j} \omega R C} \\
& \frac{\widetilde{\mathrm{~V}}_{\text {out }}(\omega)}{\widetilde{\mathrm{V}}_{\text {in }}(\omega)}=\mathrm{H}(\omega)=\frac{1}{1+\mathbf{j} \omega R C}
\end{aligned}
$$

$$
\begin{gathered}
H(\omega)=\frac{1}{1+j \omega R C} \\
H(\omega)=\frac{1-j \omega R C}{(1+j \omega R C)(1-j \omega R C)}=\underbrace{\frac{1-j \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }} \\
\text { Magnitude } \\
|H(\omega)|=\frac{1}{|1+j \omega R C|} \\
|H(\omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}}
\end{gathered}
$$

Magnitude of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC low-pass filter

log-decibel representation - Bode Plot for magnitude

The piano keyboard uses octaves (instead of decades)

Phase of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC low-pass filter

$$
H(\omega)=\frac{1-j \omega R C}{(1+j \omega R C)(1-j \omega R C)}=\underbrace{\frac{1-j \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }}
$$

$$
\angle \mathbf{H}(\boldsymbol{\omega})=\tan ^{-1} \frac{\mathfrak{\Im} m\{\mathbf{H}(\boldsymbol{\omega})\}}{\Re e\{\mathbf{H}(\boldsymbol{\omega})\}}=\tan ^{-1} \frac{-\omega R C /\left(\mathbf{1}+(\boldsymbol{\omega} R)^{2}\right)}{1 /\left(1+(\omega R C)^{2}\right)}
$$

$$
\angle H(\omega)=\tan ^{-1}(-\omega R C)=-\tan ^{-1}(\omega R C)
$$

When $\omega=\omega_{C}$ we have $\omega_{C} R C=1$

$$
\angle H(\omega)=\tan ^{-1}(-1)=-\frac{\pi}{4}=-45^{\circ}
$$

Phase for RC low-pass filter

Linear scale representation

$\angle \mathbf{H}(\boldsymbol{\omega})$ [rad]

$$
\omega_{C}=2 \pi f_{C}
$$

Phase for RC low-pass filter

semi-log scale representation - Bode Plot for phase

$\angle \mathbf{H}(\boldsymbol{\omega}) \quad$ NOTE: This plot is normalized so that $\omega_{C}=\mathbf{1}$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{0}=1 /(R C)=\left(2.5 \mathrm{k} \times 40 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=60 \mathrm{~Hz}$

$$
\omega_{1} \approx 377 \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{1} R C=2 \pi \times 60 \times 2.5 \mathrm{k} \times 400 \times 10^{-9} \approx 377.0
$$

$$
\left|H\left(\omega_{1}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{1} R C\right)^{2}}}=0.9357
$$

$\left|H\left(\omega_{1}\right)\right|_{\mathrm{dB}}=20 \log _{10}(0.9357)=-0.5772 \mathrm{~dB}$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{0}=1 /(R C)=\left(2.5 \mathrm{k} \times 40 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=160 \mathrm{~Hz}$

$$
\omega_{2}=1005.3 \mathrm{rad} / \mathrm{s}
$$

$\omega_{2} R C=2 \pi \times 160 \times 2.5 \mathrm{k} \times 400 \times 10^{-9} \approx 1.0$
$\left|H\left(\omega_{2}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{2} R C\right)^{2}}}=0.7052$
$\left|H\left(\omega_{2}\right)\right|_{d B}=20 \log _{10}(0.7052)=-3.03 \overline{3} \mathrm{~dB}$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{0}=1 /(R C)=\left(2.5 \mathrm{k} \times 40 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=16 \mathrm{kHz}$

$$
\omega_{3}=100,530 \mathrm{rad} / \mathrm{s}
$$

$\omega_{3} R C=2 \pi \times 16 \mathrm{k} \times 2.5 \mathrm{k} \times 400 \times 10^{-9} \approx 1.0$

$$
\left|H\left(\omega_{3}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{3} R C\right)^{2}}}=0.0099
$$

$\left|H\left(\omega_{3}\right)\right|_{\mathrm{dB}}=20 \log _{10}(0.7052)=-40.046 \mathrm{~dB}$

Other Low-Pass Passive filter configurations

RL filter ($\mathbf{1}^{\text {st }}$ order)

RC filter (2 ${ }^{\text {nd }}$ order)

RLC filter (2 ${ }^{\text {nd }}$ order)

RLC filter (2 ${ }^{\text {nd }}$ order)

