ECE 205 "Electrical and Electronics Circuits"

Spring 2024 - LECTURE 34
 MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Lecture 34 - Summary

Learning Objectives

1. Frequency Response of Circuits
2. Low-Pass Passives filters
3. High-Pass Passive filters

Filter

A circuit which manipulates a signal, typically by changing the relative amplitudes of the frequency components.

We will consider filters (systems) which are "single-input" and "single-output," consisting of "linear" and "time-invariant" circuits.

Fourier transform

Converts a time domain signal $V(t)$ to a frequency domain signal $\widetilde{\mathrm{V}}(\boldsymbol{\omega})$

$$
\widetilde{\mathrm{V}}(\omega)=\int_{-\infty}^{\infty} V(t) e^{-\mathrm{j} \omega t} d t
$$

In general, the Fourier Transform is a complex function

Anti-Transform

$$
V(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{V}(\omega) e^{j \omega t} d \omega
$$

Transfer Function

The relationship linking the frequency-dependent input and output

$$
\widetilde{\mathrm{V}}_{\text {out }}(\omega)=\mathbf{H}(\omega) \widetilde{V}_{\text {in }}(\omega)
$$

$$
H(\omega)=\frac{\widetilde{V}_{\text {out }}(\omega)}{\widetilde{V}_{\text {in }}(\omega)}=|\mathbf{H}(\omega)| \angle \theta(\omega)
$$

Transfer
Function

| Magnitude
 Response |
| :---: | | Phase |
| :---: |
| Response |

1 - Voltage Divider

The voltage divider is a very simple filter

$$
\begin{aligned}
& \widetilde{\mathrm{V}}_{\text {out }}(\omega)=\frac{1}{2} \widetilde{V}_{\text {in }}(\omega) \\
& H(\omega)=|H(\omega)|=\frac{1}{2}
\end{aligned}
$$

$$
|\mathbf{H}(\boldsymbol{\omega})|
$$

Behavior of Reactive Circuit Elements

Capacitor

Behavior of Reactive Circuit Elements

Inductor

$\left|Z_{L}\right|$
${ }^{\omega}$

2 - Low Pass RC filter

RC filter
(${ }^{\text {st }}$ order)

Let the input be a phasor of the form

$$
\begin{aligned}
& \widetilde{\mathrm{V}}_{\text {in }}(\omega)=\mathrm{V}_{I} \angle 0^{\circ} \\
& \widetilde{\mathrm{V}}_{\text {out }}(\omega)=\mathrm{V}_{I} \angle 0^{\circ} \frac{1 / \mathrm{j} \omega C}{R+\mathbf{1} / \mathbf{j} \omega C}=\overbrace{\mathrm{V}_{I} \angle 0^{\circ}}^{\widetilde{\mathrm{V}}_{\text {in }}(\omega)} \frac{1}{1+\mathbf{j} \omega R C} \\
& \frac{\widetilde{\mathrm{~V}}_{\text {out }}(\omega)}{\widetilde{\mathrm{V}}_{\text {in }}(\omega)}=\mathbf{H}(\omega)=\frac{1}{1+\mathbf{j} \omega R C}
\end{aligned}
$$

$$
\begin{gathered}
H(\omega)=\frac{1}{1+j \omega R C} \\
H(\omega)=\frac{1-j \omega R C}{(1+j \omega R C)(1-j \omega R C)}=\underbrace{\frac{1-j \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }} \\
\text { Magnitude } \\
|H(\omega)|=\frac{1}{|1+j \omega R C|} \\
|H(\omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}}
\end{gathered}
$$

Magnitude of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC low-pass filter

$$
\text { At } \omega=\omega_{C}: \quad R=1 / \omega C
$$

$$
|H(\omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}}
$$

$$
\omega_{C} R C=1 \rightarrow\left|H\left(\omega_{C}\right)\right|=\frac{1}{\sqrt{1+1}}=\frac{1}{\sqrt{2}}=0.707
$$

$$
\omega_{C}=2 \pi f_{C}
$$

Angular frequency at which power $P \propto|H(\omega)|^{2}$ rolls-off by $\mathbf{5 0 \%}$ (-3 dB)

$$
\tau=R C
$$

$$
\omega_{C}=\tau^{-1}
$$

$$
\omega
$$

log-decibel representation - Bode Plot for magnitude

The piano keyboard uses octaves (instead of decades)

Phase of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC low-pass filter

$$
H(\omega)=\frac{1-j \omega R C}{(1+j \omega R C)(1-j \omega R C)}=\underbrace{\frac{1-j \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }}
$$

Phase of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC low-pass filter

$$
H(\omega)=\frac{1-j \omega R C}{(1+j \omega R C)(1-j \omega R C)}=\underbrace{\frac{1-j \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }}
$$

$$
\angle H(\omega)=\tan ^{-1} \frac{\mathfrak{F} m\{\mathbf{H}(\omega)\}}{\mathfrak{R}\{\mathbf{H}(\omega)\}}=\tan ^{-1} \frac{-\omega R C /\left(1+(\omega R C)^{2}\right)}{1 /\left(1+(\omega R C)^{2}\right)}
$$

Phase of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC low-pass filter

$$
H(\omega)=\frac{1-j \omega R C}{(1+j \omega R C)(1-j \omega R C)}=\underbrace{\frac{1-j \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }}
$$

$$
\angle \mathbf{H}(\boldsymbol{\omega})=\tan ^{-1} \frac{\mathfrak{\Im} m\{\mathbf{H}(\boldsymbol{\omega})\}}{\Re e\{\mathbf{H}(\boldsymbol{\omega})\}}=\tan ^{-1} \frac{-\omega R C /\left(\mathbf{1}+(\boldsymbol{\omega} R)^{2}\right)}{1 /\left(1+(\omega R C)^{2}\right)}
$$

$$
\angle H(\omega)=\tan ^{-1}(-\omega R C)=-\tan ^{-1}(\omega R C)
$$

When $\omega=\omega_{C}$ we have $\omega_{C} R C=1$

$$
\angle H(\omega)=\tan ^{-1}(-1)=-\frac{\pi}{4}=-45^{\circ}
$$

Phase for RC low-pass filter

Linear scale representation

$\angle \mathbf{H}(\boldsymbol{\omega})$ [rad]

$$
\omega_{C}=2 \pi f_{C}
$$

Phase for RC low-pass filter

semi-log scale representation - Bode Plot for phase

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{\mathrm{C}}=1 /(R C)=\left(2.5 \mathrm{k} \times 400 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=60 \mathrm{~Hz}$

$$
\omega_{1} \approx 377 \mathrm{rad} / \mathrm{s}
$$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$
$\omega_{\mathrm{C}}=1 /(R C)=\left(2.5 \mathrm{k} \times 400 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}$
$f=60 \mathrm{~Hz}$
$\omega_{1} \approx 377 \mathrm{rad} / \mathrm{s}$
$\omega_{1} R C=2 \pi \times 60 \times 2.5 \mathrm{k} \times 400 \times 10^{-9} \approx 377.0$
$\left|H\left(\omega_{1}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{1} R C\right)^{2}}}=0.9357$
$\left|H\left(\omega_{\mathbf{1}}\right)\right|_{\mathrm{dB}}=20 \log _{10}(0.9357)=-0.5772 \mathrm{~dB}$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{\mathrm{C}}=1 /(R C)=\left(2.5 \mathrm{k} \times 400 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=160 \mathrm{~Hz}$

$$
\omega_{2}=1005.3 \mathrm{rad} / \mathrm{s}
$$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{\mathrm{C}}=1 /(R C)=\left(2.5 \mathrm{k} \times 400 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=160 \mathrm{~Hz}$

$$
\omega_{2}=1005.3 \mathrm{rad} / \mathrm{s}
$$

$\omega_{2} R C=2 \pi \times 160 \times 2.5 \mathrm{k} \times 400 \times 10^{-9} \approx 1.0$
$\left|H\left(\omega_{2}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{2} R C\right)^{2}}}=0.7052$
$\left|\mathrm{H}\left(\omega_{2}\right)\right|_{\mathrm{dB}}=20 \log _{10}(0.7052)=-3.03 \overline{3} \mathrm{~dB}$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$

$$
\omega_{\mathrm{C}}=1 /(R C)=\left(2.5 \mathrm{k} \times 400 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$f=16 \mathrm{kHz}$

$$
\omega_{3}=100,530 \mathrm{rad} / \mathrm{s}
$$

Example - RC low-pass filter

Consider $R=2.5 \mathrm{k} \Omega$ and $C=400 \mathrm{nF}$
$\omega_{\mathrm{C}}=1 /(R C)=\left(2.5 \mathrm{k} \times 400 \times 10^{-9}\right)^{-1}=10^{3} \mathrm{rad} / \mathrm{s}$

$f=16 \mathrm{kHz}$

$\omega_{3}=100,530 \mathrm{rad} / \mathrm{s}$
$\omega_{3} R C=2 \pi \times 16 \mathrm{k} \times 2.5 \mathrm{k} \times 400 \times 10^{-9} \approx 100.53$

$$
\left|H\left(\omega_{3}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{3} R C\right)^{2}}}=0.0099
$$

$\left|H\left(\omega_{3}\right)\right|_{\mathrm{dB}}=20 \log _{10}(0.0099)=-40.046 \mathrm{~dB}$

Other Low-Pass Passive filter configurations

RL filter ($\mathbf{1}^{\text {st }}$ order)

RC filter (2 ${ }^{\text {nd }}$ order)

RLC filter (2 ${ }^{\text {nd }}$ order)

RLC filter (2 ${ }^{\text {nd }}$ order)

$$
V_{i n}(t)=V_{m} \cos \left(\omega t+\theta_{V}\right)
$$

$$
\begin{aligned}
& \mathbf{H}(\boldsymbol{\omega})=|\mathbf{H}(\boldsymbol{\omega})| \angle \mathbf{H}(\boldsymbol{\omega})
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\mathbf{V}}_{\text {out }}(\omega)=\mathbf{H}(\omega) \widetilde{V}_{\text {in }}(\omega)
\end{aligned}
$$

$V_{\text {out }}(t)=|\mathbf{H}(\omega)| V_{\mathbf{m}} \cos \left(\omega t+\theta_{V}+\angle \mathbf{H}(\omega)\right)$

Example - Low Pass RC filter

$$
V_{i n}(t)=2 \cos (3000 t)
$$

Find $V_{\text {out }}(t)$
$H(\omega)=\frac{1}{1+\mathrm{j} \omega R C}$
Let $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$.

Example - Low Pass RC filter

$$
V_{i n}(t)=2 \cos (3000 t)
$$

Find $V_{\text {out }}(t)$

$$
H(\omega)=\frac{1}{1+\mathbf{j} \omega R C}
$$

\square

Let $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$.

$$
\begin{aligned}
& \omega R C=3000 \times 1 k \times 1 \mu=3 \\
& |H(\omega)|=\frac{1}{\sqrt{1+(\omega R C)^{2}}}
\end{aligned}
$$

$$
|H(\omega)|=\frac{1}{\sqrt{1+(3)^{2}}}=\frac{1}{\sqrt{10}} V
$$

$\angle H(\omega)=-\tan ^{-1}(\omega R C)$

$$
\angle H(\omega)=-\tan ^{-1}(3)=-1.249 \mathrm{rad}
$$

Example - Low Pass RC filter

$$
V_{i n}(t)=2 \cos (3000 t)
$$

Find $V_{\text {out }}(t)$

$$
H(\omega)=\frac{1}{1+\mathbf{j} \omega R C}
$$

$$
\widetilde{V}_{i n}(\omega) \quad \frac{\mathbf{1}}{\mathbf{j} \omega \boldsymbol{C}}
$$

$$
\widetilde{\mathrm{V}}_{\text {out }}(\omega)
$$

Let $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$.

$$
\begin{aligned}
& |H(\omega)|=\frac{1}{\sqrt{1+(3)^{2}}}=\frac{1}{\sqrt{10}} V \\
& \angle H(\omega)=-\tan ^{-1}(3)=-1.249 \mathrm{rad}
\end{aligned}
$$

$$
\left.\begin{array}{l}
V_{\text {out }}(t)=|H(\omega)| \times 2 \cos (3000 t+\angle H(\omega)) \\
V_{o u t}(t)=\frac{2}{\sqrt{10}} \cos (3000 t-1.249)
\end{array}\right\} \begin{gathered}
\text { Valid for sinusoidal } \\
\text { signals }
\end{gathered}
$$

$V_{i n}(t)=2 \cos (3000 t)$

$$
V_{\text {out }}(t)=\frac{2}{\sqrt{10}} \cos (3000 t-1.249)
$$

The filter introduces a time delay for the output signal

High Pass RC filter

RC filter (${ }^{\text {st }}$ order)

Let the input be a phasor of the form

$$
\begin{aligned}
& \widetilde{\mathbf{V}}_{\text {in }}(\omega)=\mathbf{V}_{I} \angle 0^{\circ} \\
& \widetilde{\mathbf{V}}_{\text {out }}(\omega)=\mathbf{V}_{I} \angle \mathbf{0}^{\circ} \frac{R}{R+\mathbf{1} / \mathbf{j} \omega C}=\overbrace{\mathbf{V}_{I} \angle \mathbf{0}^{\circ}}^{\widetilde{\mathrm{V}}_{\text {in }}(\omega)} \frac{\mathbf{j} \omega R C}{\mathbf{1 + j} \omega R C} \\
& \frac{\widetilde{\mathrm{~V}}_{\text {out }}(\omega)}{\widetilde{\mathrm{V}}_{\text {in }}(\omega)}=\mathbf{H}(\omega)=\frac{\mathbf{j} \omega R C}{\mathbf{1 + \mathbf { j } \omega R C}} \underbrace{}_{\text {Transfer Function }}
\end{aligned}
$$

$$
\mathrm{H}(\omega)=\frac{\mathrm{j} \omega R C}{1+\mathrm{j} \omega R C}
$$

$$
H(\omega)=\frac{\mathbf{j} \omega R C(1-\mathbf{j} \omega R C)}{(1+\mathbf{j} \omega R C)(1-\mathbf{j} \omega R C)}=\underbrace{\frac{(\omega R C)^{2}+\mathbf{j} \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }}
$$

Magnitude

$$
\begin{aligned}
|H(\omega)| & =\frac{|j \omega R C|}{|1+j \omega R C|} \\
|H(\omega)| & =\frac{\omega R C}{\sqrt{1+(\omega R C)^{2}}}
\end{aligned}
$$

Magnitude of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC high-pass filter

log-decibel representation - Bode Plot for magnitude

Phase of $\boldsymbol{H}(\boldsymbol{\omega})$ for RC high-pass filter

$$
\begin{gathered}
\mathbf{H}(\omega)=\frac{\mathbf{j} \omega R C(\mathbf{1}-\mathbf{j} \omega R C)}{(\mathbf{1}+\mathbf{j} \omega R C)(\mathbf{1}-\mathbf{j} \omega R C)}=\underbrace{\frac{(\omega R C)^{2}+\mathbf{j} \omega R C}{1+(\omega R C)^{2}}}_{\text {Cartesian Form }} \\
\angle \mathbf{H}(\omega)=\tan ^{-1} \frac{\Im m\{\mathbf{H}(\omega)\}}{\mathfrak{R e}\{\mathbf{H}(\omega)\}}=\tan ^{-1} \frac{\omega R C /\left(1+(\omega R C)^{2}\right)}{(\omega R C)^{2} /\left(1+(\omega R C)^{2}\right)} \\
\angle H(\omega)=\tan ^{-1}\left(\frac{1}{\omega R C}\right)
\end{gathered}
$$

When $\omega=\omega_{C}$ we have $\omega_{C} R C=1$

$$
\angle H(\omega)=\tan ^{-1}(1)=\frac{\pi}{4}=45^{\circ}
$$

Phase for RC high-pass filter

Linear scale representation

Phase for RC high-pass filter

semi-log scale representation - Bode Plot for phase

$\angle \mathbf{H}(\boldsymbol{\omega})$
NOTE: This plot is normalized so that $\omega_{C}=1$

Limitations of simple passive filters

Limitations of simple passive filters

The response of a passive filter is affected by the load connected directly to it. For example, consider a high-pass RC filter:

The parallel $\mathbf{R}_{\text {eff }}=\boldsymbol{R} / / \boldsymbol{R}_{L}$ yields an equivalent resistance lower than either \boldsymbol{R} or \boldsymbol{R}_{L}. In particular, if connected to a small resistor R_{L}, the resulting cutoff frequency $\omega_{C}^{\prime}=\left(R_{\text {eff }} C\right)^{-1}$ may change considerably with respect to the original $\omega_{C}=(R C)^{-1}$.

Overcome limitations by using active filters

In the final part of the course, we will learn how a high input impedance operational amplifier can be used as an intermediate stage to improve the interconnection between filter and load.

The filter sees $R / / R_{\text {in }} \approx R$ and is not affected. In output the voltage $V_{\text {out }}$ drives a total resistance $\boldsymbol{R}_{\text {out }}+\boldsymbol{R}_{\boldsymbol{L}}$. If $\boldsymbol{R}_{\text {out }}$ is much smaller, power is delivered mainly to the load R_{L}.

Band-Pass Filter

Cascade of a low pass and a high-pass filter can be designed so that $\omega_{C L P}>\omega_{C H P}$. The two filter characteristics combine, letting only an intermediate frequency band pass through.

Looking at frequency extremes, one can see that:

- $\boldsymbol{\omega}=\mathbf{0}$
- $\boldsymbol{\omega} \rightarrow \infty$
capacitors behave like open circuit $\rightarrow V_{\text {out }}=0$
capacitors behave like short circuit $\rightarrow V_{\text {out }}=0$

Band-Pass Filter

Frequencies $f<f_{\mathrm{L}}$ and $f>f_{\mathrm{H}}$ are strongly attenuated

Band-Stop Filter

Frequencies $f_{\mathrm{L}}<f<f_{\mathrm{H}}$ are strongly attenuated

Notch Filter

A very narrow band-stop filter, designed to reject a specific frequency, is called a notch filter.

Comb Filter

The comb filter consists of a series of regularly spaced notches and peaks (also called teeth).

