
ECE 205 “Electrical and 
Electronics Circuits” 

Spring 2024 – LECTURE 34 

MWF – 12:00pm 
 

 

Prof. Umberto Ravaioli 

2062 ECE Building 

1 



Lecture 34 – Summary 

Learning Objectives 

1. Frequency Response of Circuits 

2. Low-Pass Passives filters 

3. High-Pass Passive filters 
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Filter 
A circuit which manipulates a signal, typically by changing the relative 
amplitudes of the frequency components.   

V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  FILTER 

+ + 

We will consider filters (systems) which are “single-input” and “single-output,” 
consisting of “linear” and “time-invariant” circuits.  
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Fourier transform  
Converts a time domain signal 𝑽(𝒕) to a frequency domain signal 𝐕 (𝝎) 

𝐕 𝝎 =  𝑽(𝒕)

∞

−∞

𝒆−𝐣𝝎𝒕 𝒅𝒕 

𝑽 𝒕 =
𝟏

𝟐𝝅
 𝑽 (𝝎)

∞

−∞

𝒆𝐣𝝎𝒕 𝒅𝝎 

Anti-Transform 

In general, the Fourier Transform is a complex function 
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Transfer Function 
The relationship linking the frequency-dependent input and output  

𝐕 𝒐𝒖𝒕 𝝎 = 𝐇 𝝎  𝑽 𝒊𝒏 𝝎  

𝐇 𝝎 =
𝑽 𝒐𝒖𝒕 𝝎

𝑽 𝒊𝒏 𝝎
= 𝐇(𝝎)  ∠𝜽(𝝎) 

Transfer 
Function 

Magnitude 
Response 

Phase 
Response 
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1 – Voltage Divider 

𝐕 𝒐𝒖𝒕 𝝎 =
𝟏

𝟐
𝑽 𝒊𝒏 𝝎  

𝐇 𝝎 = 𝐇(𝝎) =
𝟏

𝟐
 

Transfer Function 

The voltage divider is a very simple filter 

V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  

𝑹 

𝑹 

𝝎 

𝟏 

𝟎. 𝟓 

 𝐇 𝝎   

This circuit works as 
an “attenuator” 
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Behavior of Reactive Circuit Elements 

𝒁𝑪 𝝎 =
𝟏

𝒋𝝎𝑪
 Capacitor 

𝑪 

𝝎 

𝒁𝑪  
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Behavior of Reactive Circuit Elements 

𝒁𝑳 𝝎 = 𝐣𝝎𝑳 
Inductor 

𝑳 

𝝎 

𝒁𝑳  
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2 – Low Pass RC filter 

RC filter 
(1st order) 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 

𝑹 

𝑪 

V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  

𝑹 

−
𝐣

𝝎𝑪
 

PHASORS 
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V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  

𝑹 

𝟏

𝐣𝝎𝑪
 

𝐕 𝒊𝒏 𝝎 = 𝐕𝑰 ∠𝟎° 

Let the input be a phasor of the form 

𝐕 𝒐𝒖𝒕 𝝎 = 𝐕𝑰 ∠𝟎°
𝟏 𝐣𝝎𝑪 

𝑹 + 𝟏 𝐣𝝎𝑪 
= 𝐕𝑰 ∠𝟎°

𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐕 𝒐𝒖𝒕 𝝎

𝐕 𝒊𝒏 𝝎
= 𝐇 𝝎 =

𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐕 𝒊𝒏 𝝎  

Transfer Function 
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𝐇 𝝎 =
𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐇 𝝎 =
𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐇 𝝎 =
𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪
=

𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

𝐇 𝝎 =
𝟏

𝟏 + 𝝎𝑹𝑪 𝟐
 

Cartesian Form 

Magnitude 
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Magnitude of 𝑯(𝝎) for RC low-pass filter 

𝐇 𝝎 =
𝟏

𝟏 + 𝝎𝑹𝑪 𝟐
 

𝝎 

𝐇 𝝎  

𝟎 

𝟏 

𝟏

𝟐
≈ 𝟎. 𝟕𝟎𝟕 

𝝉 = 𝑹𝑪 𝝎𝑪 = 𝝉−𝟏 

Angular frequency at which power 𝑷 ∝ 𝑯 𝝎 𝟐 
rolls-off by 50% (-3dB) 

𝝎𝑪𝑹𝑪 = 𝟏 𝐇 𝝎𝑪 =
𝟏

𝟏 + 𝟏
=

𝟏

𝟐
= 𝟎. 𝟕𝟎𝟕 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

At 𝝎 = 𝝎𝑪 ∶     𝑹 = 𝟏 𝝎𝑪  



13 𝝎  [𝐫𝐚𝐝 𝐬 ]  

𝟐𝟎 𝐥𝐨𝐠𝟏𝟎
𝑽𝒐𝒖𝒕
𝑽𝒊𝒏

 

Bandwidth 

Pass Band Stop Band 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

−𝟐𝟎 𝐝𝐁 𝐝𝐞𝐜𝐚𝐝𝐞  

Cut-off frequency 

log-decibel representation – Bode Plot for magnitude 

NOTE: This plot is normalized  so that 𝝎𝑪 = 𝟏 

−𝟑𝐝𝐁 



The piano keyboard uses octaves 
(instead of decades) 
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32.7Hz 

440Hz 

261.63Hz 4186Hz 523.25Hz 1046.5Hz 2093Hz 130.81Hz 66.41Hz 

27.5Hz 
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Phase of 𝑯(𝝎) for RC low-pass filter 

𝐇 𝝎 =
𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪
=

𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

Cartesian Form 
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Phase of 𝑯(𝝎) for RC low-pass filter 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏
ℑ𝑚 𝐇(𝝎)

ℜ𝑒 𝐇(𝝎)
= 𝐭𝐚𝐧−𝟏

−𝝎𝑹𝑪 𝟏 + 𝝎𝑹𝑪 𝟐 

𝟏 𝟏 + 𝝎𝑹𝑪 𝟐 
 

 

𝐇 𝝎 =
𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪
=

𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

Cartesian Form 
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Phase of 𝑯(𝝎) for RC low-pass filter 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏
ℑ𝑚 𝐇(𝝎)

ℜ𝑒 𝐇(𝝎)
= 𝐭𝐚𝐧−𝟏

−𝝎𝑹𝑪 𝟏 + 𝝎𝑹𝑪 𝟐 

𝟏 𝟏 + 𝝎𝑹𝑪 𝟐 
 

 

𝐇 𝝎 =
𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪
=

𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏 −𝝎𝑹𝑪 = −𝐭𝐚𝐧−𝟏 𝝎𝑹𝑪  

When 𝝎 = 𝝎𝑪  we have  𝝎𝑪𝑹𝑪 = 𝟏 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏 −𝟏 = −
𝝅

𝟒
= −𝟒𝟓°  

Cartesian Form 
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Phase for RC low-pass filter 

Linear scale representation 

∠𝐇(𝝎) 

𝝎  [𝐫𝐚𝐝 𝐬 ]  

[𝐫𝐚𝐝]  

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

−𝝅 𝟐  

−𝝅 𝟒  

𝟎 
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Phase for RC low-pass filter 

semi-log scale representation – Bode Plot for phase 

− 

− 

− 

−45 

° 

° 

° 

° 

° 

∠𝐇(𝝎) 

𝝎/𝝎𝒄  [𝐫𝐚𝐝 𝐬 ]  

[𝐝𝐞𝐠]  

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

NOTE: This plot is normalized  so that 𝝎𝑪 = 𝟏 
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Example - RC low-pass filter 𝝎𝟏  

Consider  𝑹 = 𝟐. 𝟓 𝐤𝛀  and  𝑪 = 𝟒𝟎𝟎 𝐧𝐅 

𝒇 = 𝟔𝟎𝐇𝐳 

𝝎𝐂 = 𝟏 (𝑹𝑪) = 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗
−𝟏

= 𝟏𝟎𝟑  𝐫𝐚𝐝 𝐬  

𝝎𝟏 ≈ 𝟑𝟕𝟕 𝐫𝐚𝐝/𝐬 
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Example - RC low-pass filter 𝝎𝟏  

Consider  𝑹 = 𝟐. 𝟓 𝐤𝛀  and  𝑪 = 𝟒𝟎𝟎 𝐧𝐅 

𝒇 = 𝟔𝟎𝐇𝐳 

𝝎𝟏𝑹𝑪 = 𝟐𝝅 × 𝟔𝟎 × 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗 ≈ 𝟑𝟕𝟕. 𝟎 

𝐇 𝝎𝟏 =
𝟏

𝟏 + 𝝎𝟏𝑹𝑪
𝟐
= 𝟎. 𝟗𝟑𝟓𝟕 

𝝎𝐂 = 𝟏 (𝑹𝑪) = 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗
−𝟏

= 𝟏𝟎𝟑  𝐫𝐚𝐝 𝐬  

𝝎𝟏 ≈ 𝟑𝟕𝟕 𝐫𝐚𝐝/𝐬 

𝐇 𝝎𝟏 𝐝𝐁 = 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 𝟎. 𝟗𝟑𝟓𝟕 = −𝟎. 𝟓𝟕𝟕𝟐 𝐝𝐁 
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𝟐𝟎 𝐥𝐨𝐠𝟏𝟎
𝑽𝒐𝒖𝒕
𝑽𝒊𝒏

 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

𝝎𝟏 
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Consider  𝑹 = 𝟐. 𝟓 𝐤𝛀  and  𝑪 = 𝟒𝟎𝟎 𝐧𝐅 

𝒇 = 𝟏𝟔𝟎𝐇𝐳 

𝝎𝐂 = 𝟏 (𝑹𝑪) = 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗
−𝟏

= 𝟏𝟎𝟑  𝐫𝐚𝐝 𝐬  

𝝎𝟐 = 𝟏𝟎𝟎𝟓. 𝟑 𝐫𝐚𝐝/𝐬 

Example - RC low-pass filter 𝝎𝟐  
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Consider  𝑹 = 𝟐. 𝟓 𝐤𝛀  and  𝑪 = 𝟒𝟎𝟎 𝐧𝐅 

𝒇 = 𝟏𝟔𝟎𝐇𝐳 

𝝎𝟐𝑹𝑪 = 𝟐𝝅 × 𝟏𝟔𝟎 × 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗 ≈ 𝟏. 𝟎 

𝐇 𝝎𝟐 =
𝟏

𝟏 + 𝝎𝟐𝑹𝑪
𝟐
= 𝟎. 𝟕𝟎𝟓𝟐 

𝝎𝐂 = 𝟏 (𝑹𝑪) = 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗
−𝟏

= 𝟏𝟎𝟑  𝐫𝐚𝐝 𝐬  

𝝎𝟐 = 𝟏𝟎𝟎𝟓. 𝟑 𝐫𝐚𝐝/𝐬 

𝐇 𝝎𝟐 𝐝𝐁 = 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 𝟎. 𝟕𝟎𝟓𝟐 = −𝟑. 𝟎𝟑𝟑  𝐝𝐁 

Example - RC low-pass filter 𝝎𝟐  
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𝟐𝟎 𝐥𝐨𝐠𝟏𝟎
𝑽𝒐𝒖𝒕
𝑽𝒊𝒏

 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

𝝎𝟐 𝝎𝟏 
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Consider  𝑹 = 𝟐. 𝟓 𝐤𝛀  and  𝑪 = 𝟒𝟎𝟎 𝐧𝐅 

𝒇 = 𝟏𝟔 𝐤𝐇𝐳 

𝝎𝐂 = 𝟏 (𝑹𝑪) = 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗
−𝟏

= 𝟏𝟎𝟑  𝐫𝐚𝐝 𝐬  

𝝎𝟑 = 𝟏𝟎𝟎, 𝟓𝟑𝟎 𝐫𝐚𝐝/𝐬 

Example - RC low-pass filter 𝝎𝟑  
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Consider  𝑹 = 𝟐. 𝟓 𝐤𝛀  and  𝑪 = 𝟒𝟎𝟎 𝐧𝐅 

𝒇 = 𝟏𝟔 𝐤𝐇𝐳 

𝝎𝟑𝑹𝑪 = 𝟐𝝅 × 𝟏𝟔𝐤 × 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗 ≈ 𝟏𝟎𝟎. 𝟓𝟑 

𝐇 𝝎𝟑 =
𝟏

𝟏 + 𝝎𝟑𝑹𝑪
𝟐
= 𝟎. 𝟎𝟎𝟗𝟗 

𝝎𝐂 = 𝟏 (𝑹𝑪) = 𝟐. 𝟓𝐤 × 𝟒𝟎𝟎 × 𝟏𝟎−𝟗
−𝟏

= 𝟏𝟎𝟑  𝐫𝐚𝐝 𝐬  

𝝎𝟑 = 𝟏𝟎𝟎, 𝟓𝟑𝟎 𝐫𝐚𝐝/𝐬 

𝐇 𝝎𝟑 𝐝𝐁 = 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 𝟎. 𝟎𝟎𝟗𝟗 = −𝟒𝟎. 𝟎𝟒𝟔 𝐝𝐁 

Example - RC low-pass filter 𝝎𝟑  
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𝟐𝟎 𝐥𝐨𝐠𝟏𝟎
𝑽𝒐𝒖𝒕
𝑽𝒊𝒏

 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

𝝎𝟑 𝝎𝟐 𝝎𝟏 
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Other Low-Pass Passive filter configurations 

RC filter (2nd order) RL filter (1st  order) 

RLC filter (2nd order) RLC filter (2nd order) 
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Sinusoidal input signal 

𝐇 𝝎 = 𝐇 𝝎  ∠𝐇 𝝎  

𝑽𝒊𝒏 𝒕 = 𝑽𝐦 𝐜𝐨𝐬(𝝎𝒕 + 𝜽𝑽) 

𝐕 𝒐𝒖𝒕 𝝎 = 𝐇 𝝎  𝑽 𝒊𝒏 𝝎  

𝑽𝒐𝒖𝒕 𝒕 = 𝐇 𝝎 𝑽𝐦 𝐜𝐨𝐬(𝝎𝒕 + 𝜽𝑽 + ∠𝐇 𝝎 ) 
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V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  

𝑹 

𝟏

𝐣𝝎𝑪
 

Let  𝑹 = 𝟏𝐤𝛀  and 𝑪 = 𝟏𝛍𝐅. 

𝐇 𝝎 =
𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝑽𝒊𝒏 𝒕 = 𝟐 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕) 

Example – Low Pass RC filter 

Find  𝑽𝒐𝒖𝒕 𝒕  
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V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  

𝑹 

𝟏

𝐣𝝎𝑪
 

Let  𝑹 = 𝟏𝐤𝛀  and 𝑪 = 𝟏𝛍𝐅. 

𝐇 𝝎 =
𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝑽𝒊𝒏 𝒕 = 𝟐 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕) 

Example – Low Pass RC filter 

𝝎𝑹𝑪 = 𝟑𝟎𝟎𝟎 × 𝟏𝒌 × 𝟏𝝁 = 𝟑 

𝐇 𝝎 =
𝟏

𝟏 + 𝝎𝑹𝑪 𝟐
 

𝐇 𝝎 =
𝟏

𝟏 + 𝟑 𝟐
=

𝟏

𝟏𝟎
 𝐕 

∠𝐇 𝝎 = −𝐭𝐚𝐧−𝟏 𝝎𝑹𝑪  

∠𝐇 𝝎 = −𝐭𝐚𝐧−𝟏 𝟑 = −𝟏. 𝟐𝟒𝟗 𝐫𝐚𝐝 

Find  𝑽𝒐𝒖𝒕 𝒕  
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V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  

𝑹 

𝟏

𝐣𝝎𝑪
 

Let  𝑹 = 𝟏𝐤𝛀  and 𝑪 = 𝟏𝛍𝐅. 

𝐇 𝝎 =
𝟏

𝟏 + 𝐣𝝎𝑹𝑪
 

𝑽𝒊𝒏 𝒕 = 𝟐 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕) 

Example – Low Pass RC filter 

𝐇 𝝎 =
𝟏

𝟏 + 𝟑 𝟐
=

𝟏

𝟏𝟎
 𝐕 

∠𝐇 𝝎 = −𝐭𝐚𝐧−𝟏 𝟑 = −𝟏. 𝟐𝟒𝟗 𝐫𝐚𝐝 

𝑽𝒐𝒖𝒕 𝒕 = 𝐇(𝝎)  × 𝟐 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕 + ∠𝐇(𝝎)) 

𝑽𝒐𝒖𝒕 𝒕 =
𝟐

𝟏𝟎
 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕 − 𝟏. 𝟐𝟒𝟗) 

Find  𝑽𝒐𝒖𝒕 𝒕  

Valid for sinusoidal 
signals 
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𝑽𝒊𝒏 𝒕 = 𝟐 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕) 𝑽𝒐𝒖𝒕 𝒕 =
𝟐

𝟏𝟎
 𝐜𝐨𝐬(𝟑𝟎𝟎𝟎𝒕 − 𝟏. 𝟐𝟒𝟗) 

𝒕 [ 𝐦𝐬 ] 

𝑽 [ 𝐕 ] 

The filter introduces a time delay for the output signal 
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High Pass RC filter 

RC filter 
(1st order) 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 𝑹 

𝑪 

V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  𝑹 

−
𝐣

𝝎𝑪
 

PHASORS 
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𝐕 𝒊𝒏 𝝎 = 𝐕𝑰 ∠𝟎° 

Let the input be a phasor of the form 

𝐕 𝒐𝒖𝒕 𝝎 = 𝐕𝑰 ∠𝟎°
𝑹

𝑹 + 𝟏 𝐣𝝎𝑪 
= 𝐕𝑰 ∠𝟎°

𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐕 𝒐𝒖𝒕 𝝎

𝐕 𝒊𝒏 𝝎
= 𝐇 𝝎 =

𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐕 𝒊𝒏 𝝎  

Transfer Function 

V 𝑖𝑛 𝜔  V 𝑜𝑢𝑡 𝜔  𝑹 

−
𝐣

𝝎𝑪
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𝐇 𝝎 =
𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐇 𝝎 =
𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪
 

𝐇 𝝎 =
𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪
=

𝝎𝑹𝑪 𝟐 + 𝐣𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

𝐇 𝝎 =
𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

Cartesian Form 

Magnitude 
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Magnitude of 𝑯(𝝎) for RC high-pass filter 

𝐇 𝝎 =
𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
 

𝝎 

𝐇 𝝎  

𝟎 

𝟏 

𝟏

𝟐
≈ 𝟎. 𝟕𝟎𝟕 

𝝉 = 𝑹𝑪 𝝎𝑪 = 𝝉−𝟏 

Angular frequency at which power 𝑷 ∝ 𝑯 𝝎 𝟐 

rolls-off  by 50% (-3dB) 

𝝎𝑪𝑹𝑪 = 𝟏 𝐇 𝝎𝑪 =
𝟏

𝟏 + 𝟏
=

𝟏

𝟐
= 𝟎. 𝟕𝟎𝟕 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 



39 𝝎/𝝎𝑪  [𝐫𝐚𝐝 𝐬 ]  

𝟐𝟎 𝐥𝐨𝐠𝟏𝟎
𝑽𝒐𝒖𝒕
𝑽𝒊𝒏

 

Bandwidth 

Stop Band Pass Band 

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

𝟐𝟎 𝐝𝐁 𝐝𝐞𝐜𝐚𝐝𝐞  

Cut-off frequency 

−𝟑𝐝𝐁 

log-decibel representation – Bode Plot for magnitude 

NOTE: This plot is normalized  so that 𝝎𝑪 = 𝟏 
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Phase of 𝑯(𝝎) for RC high-pass filter 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏
ℑ𝑚 𝐇(𝝎)

ℜ𝑒 𝐇(𝝎)
= 𝐭𝐚𝐧−𝟏

𝝎𝑹𝑪 𝟏 + 𝝎𝑹𝑪 𝟐 

𝝎𝑹𝑪 𝟐 𝟏 + 𝝎𝑹𝑪 𝟐 
 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏
𝟏

𝝎𝑹𝑪
 

When 𝝎 = 𝝎𝑪  we have  𝝎𝑪𝑹𝑪 = 𝟏 

∠𝐇 𝝎 = 𝐭𝐚𝐧−𝟏 𝟏 =
𝝅

𝟒
= 𝟒𝟓°  

Cartesian Form 

𝐇 𝝎 =
𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪

𝟏 + 𝐣𝝎𝑹𝑪 𝟏 − 𝐣𝝎𝑹𝑪
=

𝝎𝑹𝑪 𝟐 + 𝐣𝝎𝑹𝑪

𝟏 + 𝝎𝑹𝑪 𝟐
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Phase for RC high-pass filter 

Linear scale representation 

∠𝐇(𝝎) 

𝝎/𝝎𝐂  [𝐫𝐚𝐝 𝐬 ]  

[𝐫𝐚𝐝]  

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

𝝅 𝟐  

𝝅 𝟒  

𝟎 
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Phase for RC high-pass filter 

45 

° 

° 

° 

° 

° 

∠𝐇(𝝎) 

𝝎  [𝐫𝐚𝐝 𝐬 ]  

[𝐝𝐞𝐠]  

𝝎𝑪 = 𝟐𝝅𝒇𝑪 

semi-log scale representation – Bode Plot for phase 

NOTE: This plot is normalized  so that 𝝎𝑪 = 𝟏 
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Limitations of simple passive filters 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 𝑹 

𝑪 
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Limitations of simple passive filters 

The response of a passive filter is affected by the load connected 
directly to it.  For example, consider a high-pass RC filter: 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 𝑹 

𝑪 

𝑹𝑳 

LOAD 

The parallel 𝐑𝐞𝐟𝐟 = 𝑹//𝑹𝑳 yields an equivalent resistance lower 
than either 𝑹 or 𝑹𝑳.  In particular, if connected to a small resistor 
𝑹𝑳, the resulting cutoff frequency 𝝎𝑪

′ = 𝑹𝐞𝐟𝐟𝑪
−𝟏 may change 

considerably with respect to the original 𝝎𝑪 = 𝑹𝑪 −𝟏. 
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Overcome limitations by using active filters 
In the final part of the course, we will learn how a high input 
impedance operational amplifier can be used as an intermediate 
stage to improve the interconnection between filter and load. 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 𝑹 

𝑪 

𝑹𝑳 

LOAD 

+ 

− 

Unity amplifier 
(buffer) 

High input 
impedance 𝑹𝒊𝒏 

Low output 
impedance 𝑹𝒐𝒖𝒕 

The filter sees 𝑹//𝑹𝒊𝒏 ≈ 𝑹 and is not affected.  In output the 
voltage 𝑽𝒐𝒖𝒕 drives a total resistance 𝑹𝒐𝒖𝒕 + 𝑹𝑳.  If 𝑹𝒐𝒖𝒕 is much 
smaller, power is delivered mainly to the load 𝑹𝑳. 
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Band-Pass Filter 

Cascade of a low pass and a high-pass filter can be designed so 
that 𝝎𝑪𝑳𝑷 > 𝝎𝑪𝑯𝑷.  The two filter characteristics combine, letting 
only an intermediate frequency band pass through. 

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡 

𝑹𝟏 

𝑪𝟏 𝑹𝟐 

Looking at frequency extremes, one can see that: 
• 𝝎 = 𝟎 capacitors behave like open circuit  𝑽𝒐𝒖𝒕 = 𝟎 
• 𝝎 → ∞ capacitors behave like short circuit  𝑽𝒐𝒖𝒕 = 𝟎   

𝑪𝟐 
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Band-Pass Filter 

Frequencies  f < fL  and  f > fH  are strongly attenuated 

0.707 

1 

Bandwidth:  BW = fH - fL 

fL fH 
f 

fC 
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Band-Stop Filter 

Frequencies fL < f < fH  are strongly attenuated 

0.707 

1 

Bandwidth:  BW = fH - fL 

fL fH 
f 

fC 
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Notch Filter 

1 

f fC 

A very narrow band-stop filter, designed to reject a 
specific frequency, is called a notch filter. 
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Comb Filter 

1 

f f1 

The comb filter consists of a series of regularly spaced 
notches and peaks (also called teeth). 

f2 f3 f4 


