ECE 205 "Electrical and Electronics Circuits"

Spring 2024 – LECTURE 35 MWF – 12:00pm

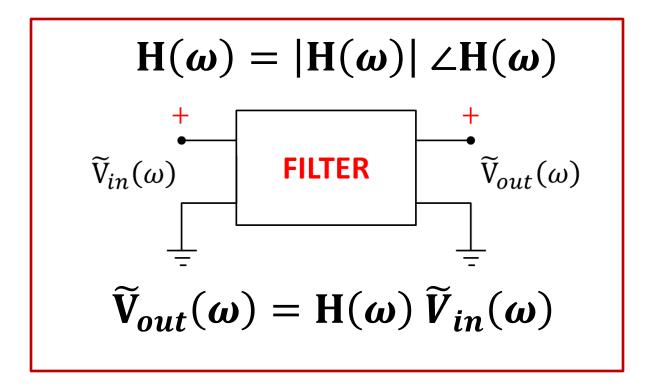
Prof. Umberto Ravaioli

2062 ECE Building

Lecture 35 – Summary

- **Learning Objectives**
- 1. Low-Pass and High-Pass Filters
- 2. Behavior of Operational Amplifiers

$$V_{in}(t) = V_{m} \cos(\omega t + \theta_{V})$$



 $V_{out}(t) = |\mathbf{H}(\boldsymbol{\omega})|V_{\mathbf{m}}\cos(\boldsymbol{\omega}t + \boldsymbol{\theta}_{V} + \angle \mathbf{H}(\boldsymbol{\omega}))$

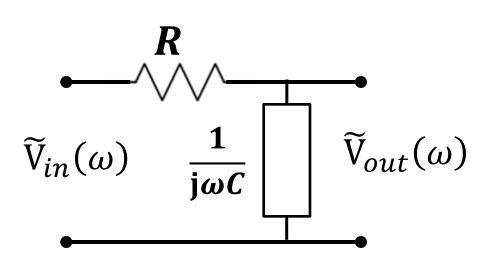
Example – Low Pass RC filter

 $V_{in}(t) = 2\cos(3000t)$

Find $V_{out}(t)$

$$H(\omega) = \frac{1}{1 + j\omega RC}$$

Let $R = 1k\Omega$ and $C = 1\mu F$.

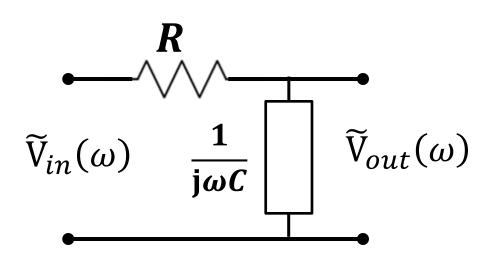


Example – Low Pass RC filter

$$V_{in}(t) = 2\cos(3000t)$$

Find $V_{out}(t)$

$$H(\omega) = \frac{1}{1 + j\omega RC}$$



Let $R = 1k\Omega$ and $C = 1\mu F$.

$$\omega RC = 3000 \times 1k \times 1\mu = 3$$

$$|\mathbf{H}(\boldsymbol{\omega})| = \frac{1}{\sqrt{1 + (\boldsymbol{\omega} R C)^2}}$$

$$|\mathbf{H}(\boldsymbol{\omega})| = \frac{1}{\sqrt{1+(3)^2}} = \frac{1}{\sqrt{10}} \mathbf{V}$$

 $\angle \mathbf{H}(\boldsymbol{\omega}) = -\tan^{-1}(\boldsymbol{\omega}\mathbf{R}\mathbf{C})$

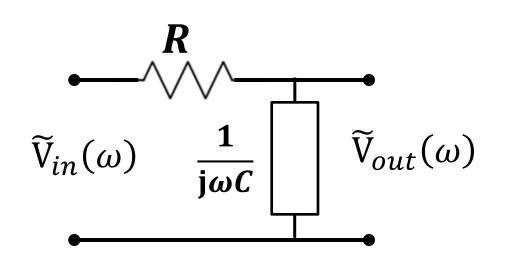
 $\angle H(\omega) = -\tan^{-1}(3) = -1.249$ rad

Example – Low Pass RC filter

 $V_{in}(t) = 2\cos(3000t)$

Find $V_{out}(t)$

$$H(\omega) = \frac{1}{1 + j\omega RC}$$



Let $R = 1k\Omega$ and $C = 1\mu F$.

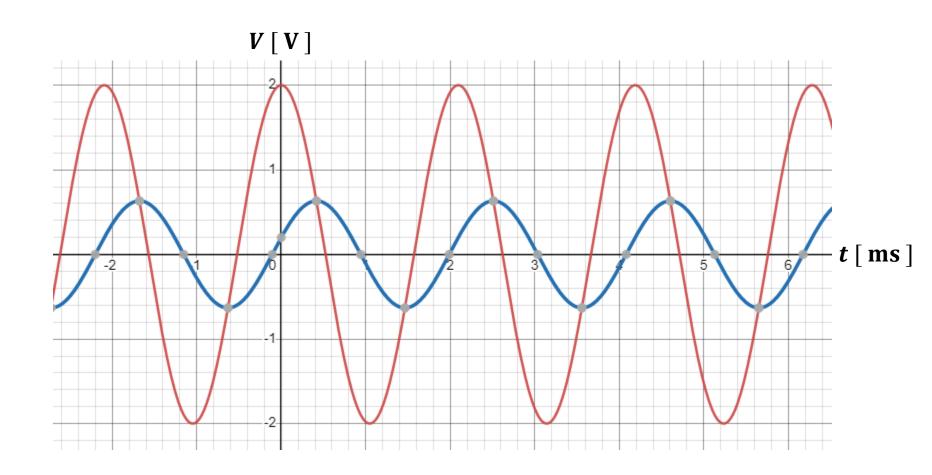
$$|H(\omega)| = \frac{1}{\sqrt{1 + (3)^2}} = \frac{1}{\sqrt{10}} V$$
$$\angle H(\omega) = -\tan^{-1}(3) = -1.249 \text{ rad}$$

 $V_{out}(t) = |\mathbf{H}(\boldsymbol{\omega})| \times 2\cos(3000t + \angle \mathbf{H}(\boldsymbol{\omega}))$

$$V_{out}(t) = \frac{2}{\sqrt{10}} \cos(3000t - 1.249)$$

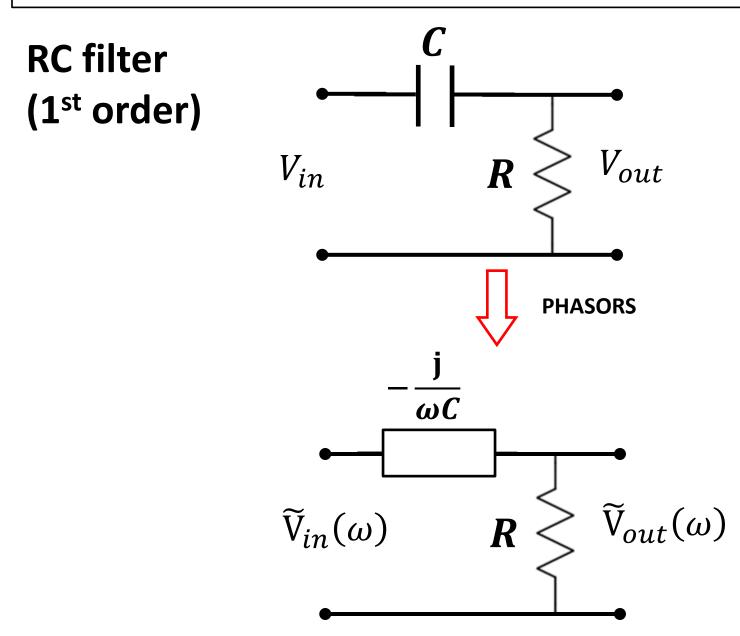
Valid for sinusoidal signals

$$V_{in}(t) = 2\cos(3000t)$$
 $V_{out}(t) = \frac{2}{\sqrt{10}}\cos(3000t - 1.249)$



The filter introduces a time delay for the output signal

High Pass RC filter



$$\begin{split} & \overbrace{\tilde{V}_{in}(\omega)}^{-\overset{j}{\omega C}} R \stackrel{\tilde{V}_{out}(\omega)}{R} \stackrel{\tilde{V}_{out}(\omega)}{P} \\ & \text{Let the input be a phasor of the form} \\ & \widetilde{V}_{in}(\omega) = V_I \angle 0^{\circ} \\ & \widetilde{V}_{out}(\omega) = V_I \angle 0^{\circ} \frac{R}{R+1/j\omega C} = V_I \angle 0^{\circ} \frac{j\omega RC}{1+j\omega RC} \\ & \overbrace{\tilde{V}_{out}(\omega)}^{\widetilde{V}_{out}(\omega)} = H(\omega) = \frac{j\omega RC}{1+j\omega RC} \\ & \xrightarrow{\tilde{V}_{out}(\omega)}_{\widetilde{V}_{in}(\omega)} = H(\omega) = \frac{j\omega RC}{1+j\omega RC} \end{split}$$

$$H(\boldsymbol{\omega}) = \frac{j\omega RC}{1+j\omega RC}$$

$$H(\omega) = \frac{j\omega RC(1 - j\omega RC)}{(1 + j\omega RC)(1 - j\omega RC)} = \frac{(\omega RC)^2 + j\omega RC}{1 + (\omega RC)^2}$$

Cartesian Form

Magnitude
$$|\mathbf{H}(\boldsymbol{\omega})| = \frac{|\mathbf{j}\boldsymbol{\omega}\mathbf{R}\mathbf{C}|}{|\mathbf{1} + \mathbf{j}\boldsymbol{\omega}\mathbf{R}\mathbf{C}|}$$

$$|\mathbf{H}(\boldsymbol{\omega})| = \frac{\boldsymbol{\omega}RC}{\sqrt{1 + (\boldsymbol{\omega}RC)^2}}$$

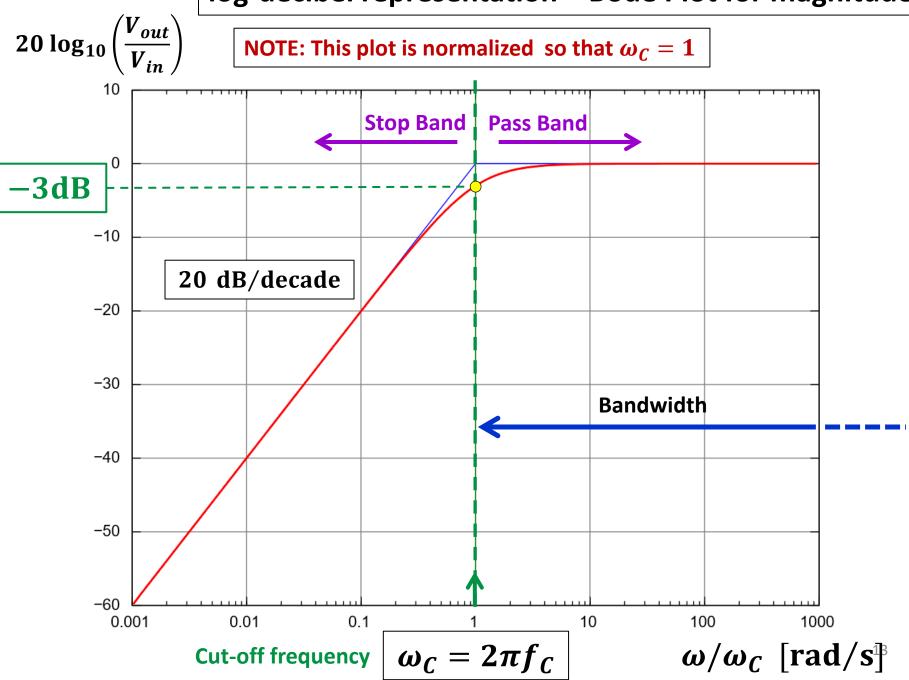
Magnitude of $H(\omega)$ for RC high-pass filter

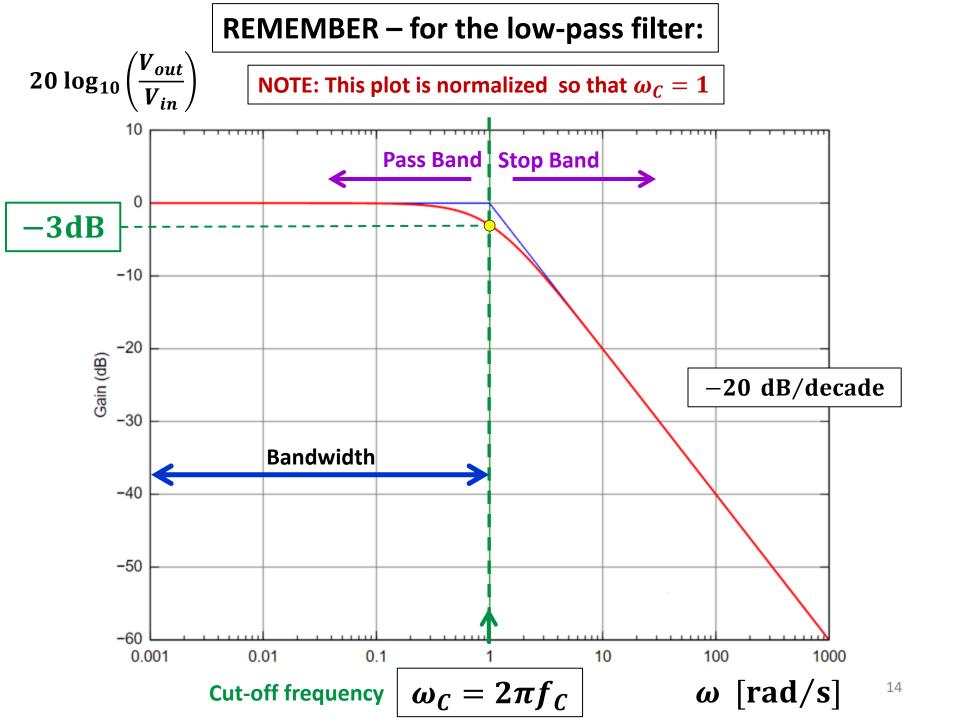
T

REMEMBER – for the RC low-pass filter:

At
$$\omega = \omega_c$$
: $R = 1/\omega C$
 $|H(\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$
 $|H(\omega)|$
 $\omega_c RC = 1 \rightarrow |H(\omega_c)| = \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{2}} = 0.707$
 $\omega_c = 2\pi f_c$
Angular frequency at which power $P \propto |H(\omega)|^2$
rolls-off by 50% (-3dB)
 $\omega_c = \tau^{-1}$
 $\omega_c = 1$

log-decibel representation – Bode Plot for magnitude





Phase of
$$H(\omega)$$
 for RC high-pass filter

$$H(\omega) = \frac{j\omega RC(1 - j\omega RC)}{(1 + j\omega RC)(1 - j\omega RC)} = \frac{(\omega RC)^2 + j\omega RC}{1 + (\omega RC)^2}$$

$$\overset{(\omega RC)^2}{\underset{Cartesian Form}{}}$$

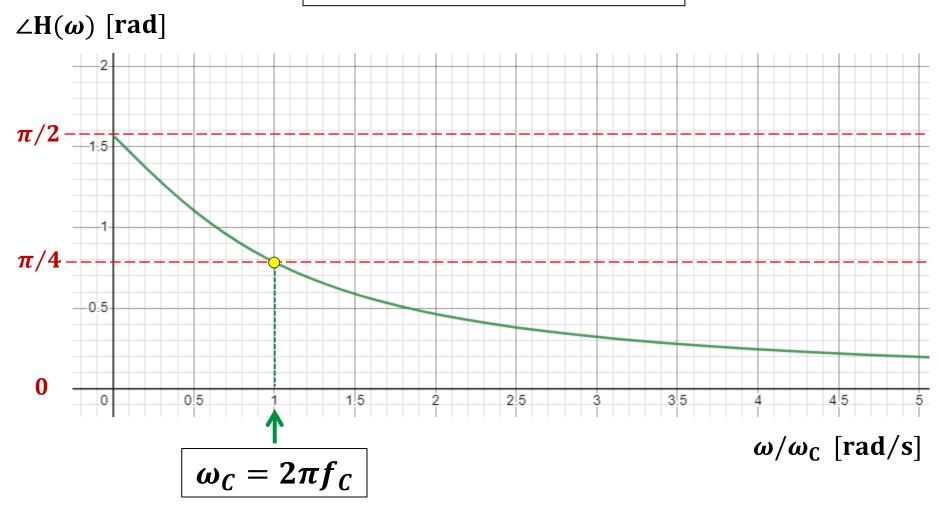
$$\angle H(\omega) = \tan^{-1} \frac{\Im m\{H(\omega)\}}{\Re e\{H(\omega)\}} = \tan^{-1} \frac{\omega RC/(1 + (\omega RC)^2)}{(\omega RC)^2/(1 + (\omega RC)^2)}$$

$$\angle \mathbf{H}(\boldsymbol{\omega}) = \tan^{-1}\left(\frac{1}{\boldsymbol{\omega}RC}\right)$$

When $\omega = \omega_c$ we have $\omega_c RC = 1$ $\angle H(\omega) = \tan^{-1}(1) = \frac{\pi}{4} = 45^\circ$

Phase for RC high-pass filter

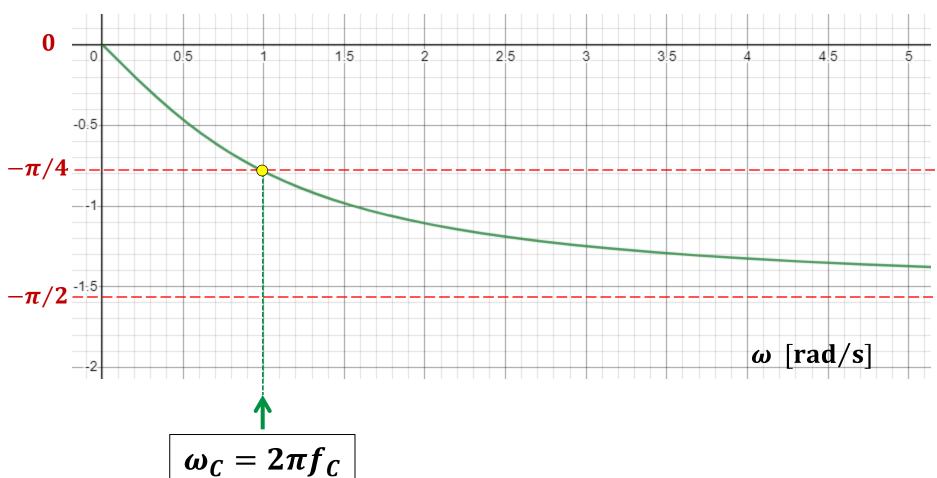
Linear scale representation



REMEMBER – for the RC low-pass filter:

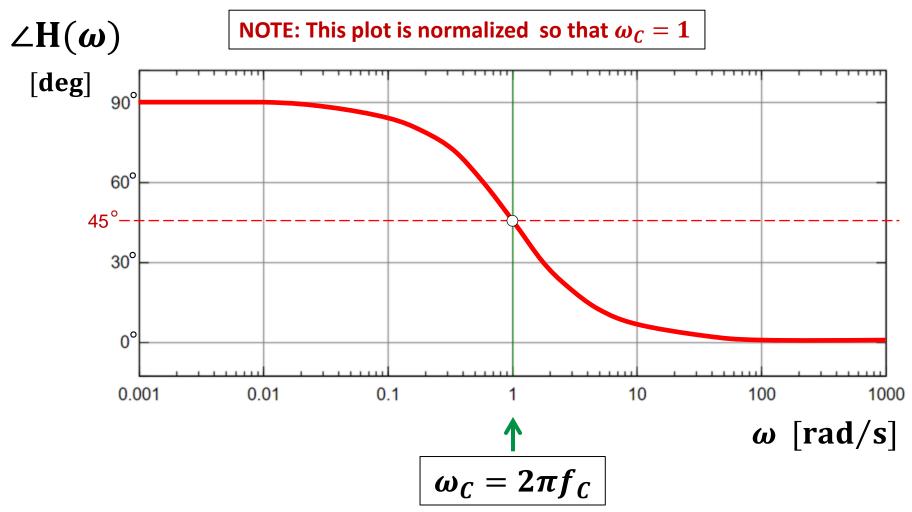
Linear scale representation

 $\angle H(\boldsymbol{\omega})$ [rad]



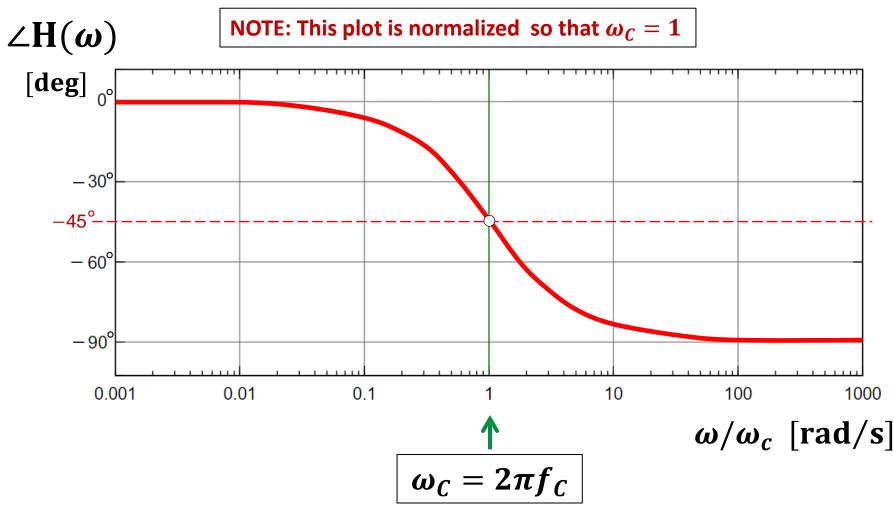
Phase for RC high-pass filter

semi-log scale representation – Bode Plot for phase



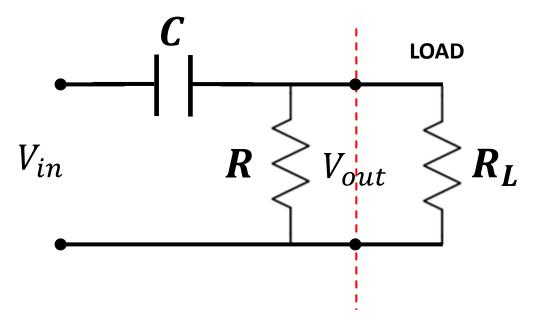
REMEMBER – for the RC low-pass filter:

semi-log scale representation – Bode Plot for phase



Limitations of simple passive filters

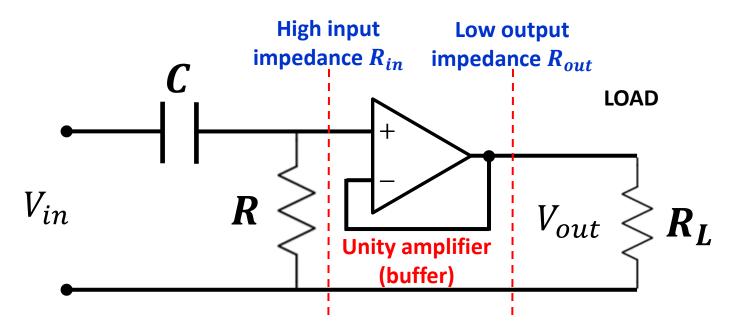
The response of a passive filter is affected by the load connected directly to it. For example, consider a high-pass RC filter:



The parallel $R_{eff} = R//R_L$ yields an equivalent resistance lower than either R or R_L . In particular, if connected to a small resistor R_L , the resulting cutoff frequency $\omega'_C = (R_{eff}C)^{-1}$ may change considerably with respect to the original $\omega_C = (RC)^{-1}$.

Overcome limitations by using active filters

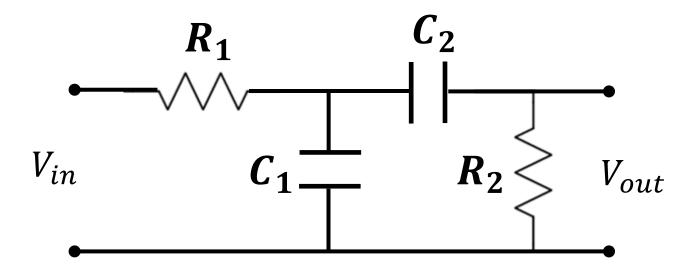
In the final part of the course, we will learn how a high input impedance operational amplifier can be used as an intermediate stage to improve the interconnection between filter and load.



The filter sees $R//R_{in} \approx R$ and is not affected. In output the voltage V_{out} drives a total resistance $R_{in} + R_L$. If R_{out} is much smaller, power is delivered mainly to the load R_L .

Band-Pass Filter

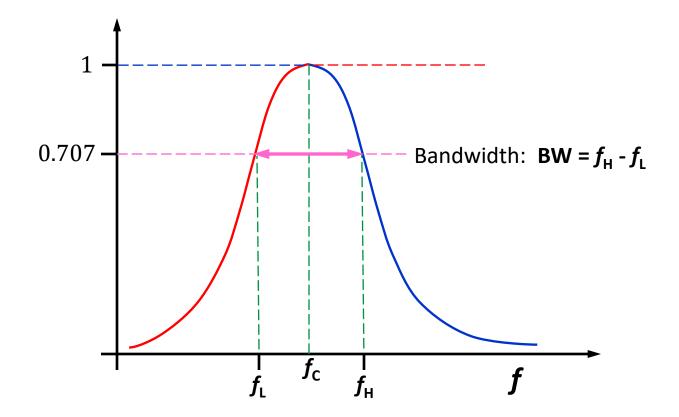
Cascade of a low pass and a high-pass filter can be designed so that $\omega_{CLP} > \omega_{CHP}$. The two filter characteristics combine, letting only an intermediate frequency band pass through.



Looking at frequency extremes, one can see that:

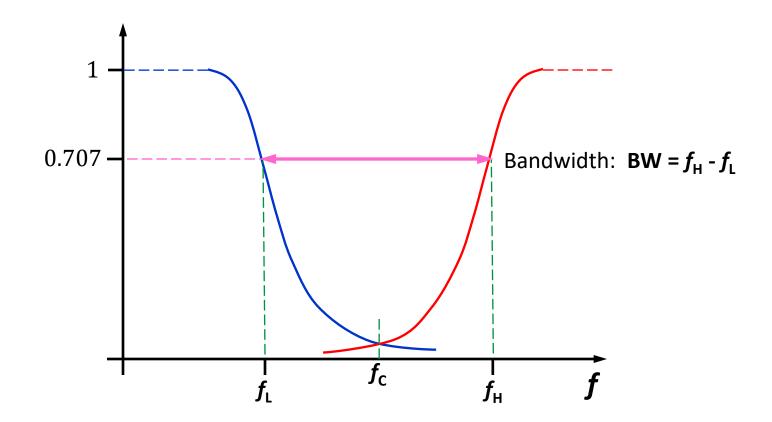
- $\omega = 0$ capacitors behave like open circuit $\rightarrow V_{out} = 0$
- $\omega \rightarrow \infty$ capacitors behave like short circuit $\rightarrow V_{out} = 0$

Band-Pass Filter



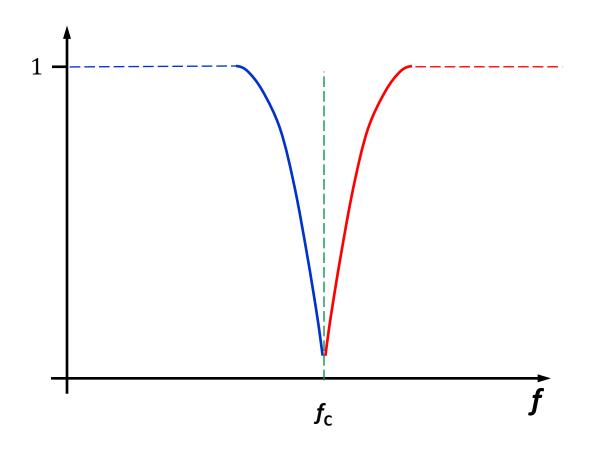
Frequencies $f < f_L$ and $f > f_H$ are strongly attenuated

Band-Stop Filter



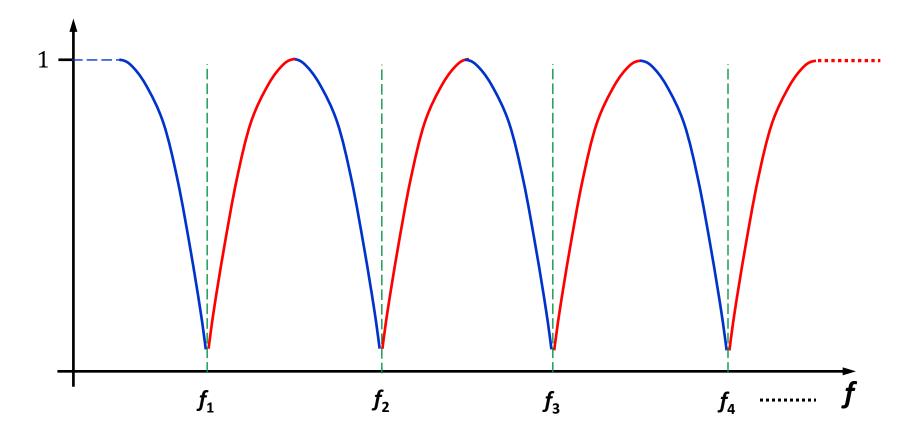
Frequencies and $f_{L} < f < f_{H}$ are strongly attenuated

Notch Filter



A very narrow band-stop filter, designed to reject a specific frequency, is called a notch filter.

Comb Filter



The comb filter consists of a series of regularly spaced notches and peaks (also called *teeth*).

Operational Amplifiers

Passive Circuit Response

The frequency response of passive circuits has notable limitations.

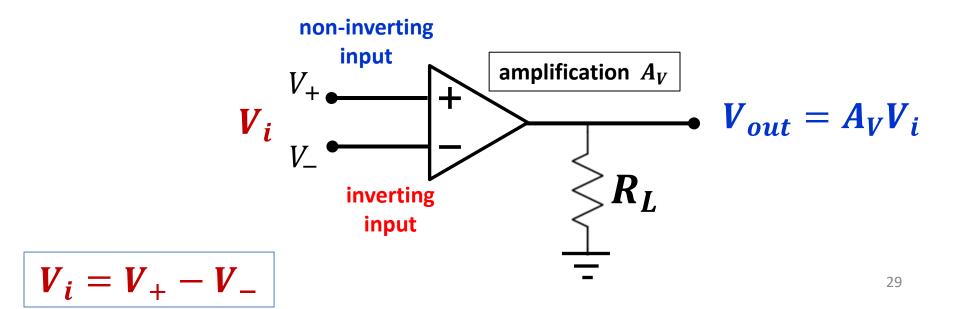
- The magnitude of the transfer function is always $|H(\omega)| \leq 1$
- When a load is applied, the frequency response changes

Operational amplifiers can be used to address these limitations.

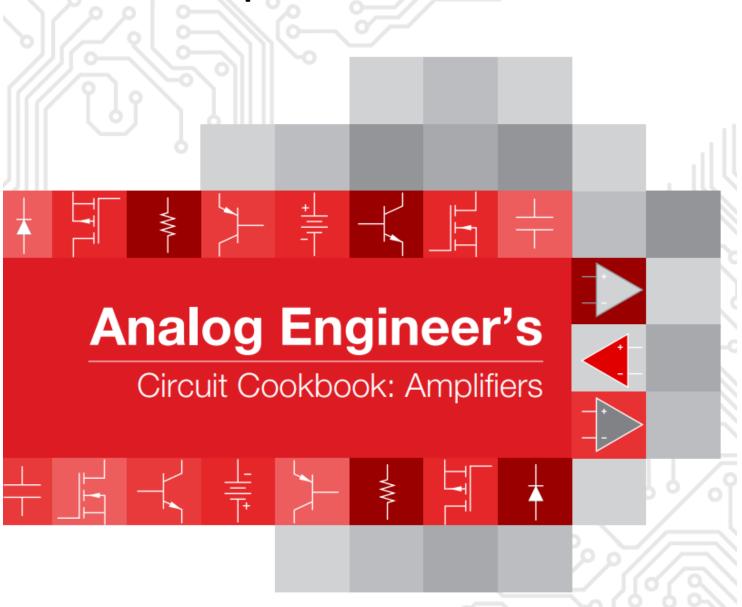
Operational Amplifier

The Operational Amplifier (or OP AMP) is a versatile high gain circuit whose response characteristics can be controlled with the application of feedback.

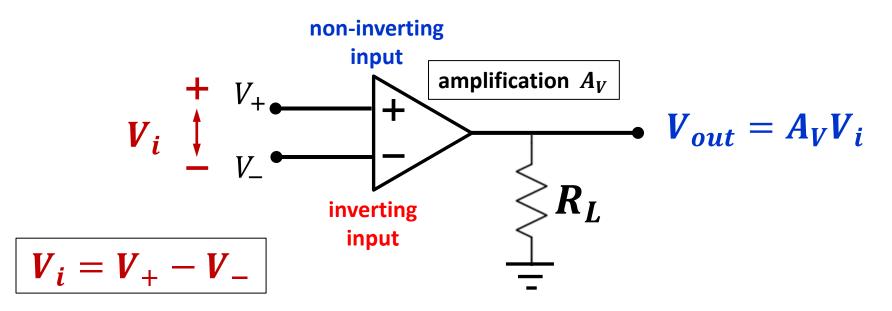
It is commonly available in a compact integrated circuit package and it can be used as the basic building block for designing many analog circuit applications.



Extensive technical reference from Texas Instruments uploaded on Canvas



The OP AMP has usually two inputs and one output



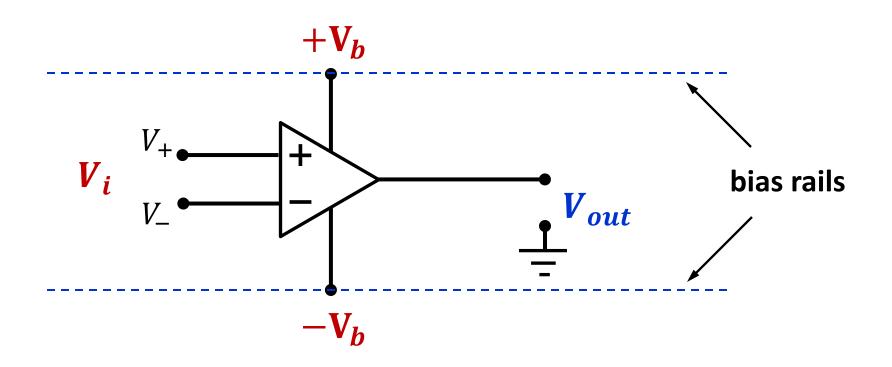
The gain between V_{out} and V_+ is positive (non-inverting)

 $\frac{V_{out}}{V_+} > 0$

The gain between V_{out} and V_{-} is negative (inverting)

$$\frac{V_{out}}{V_{-}} < 0$$

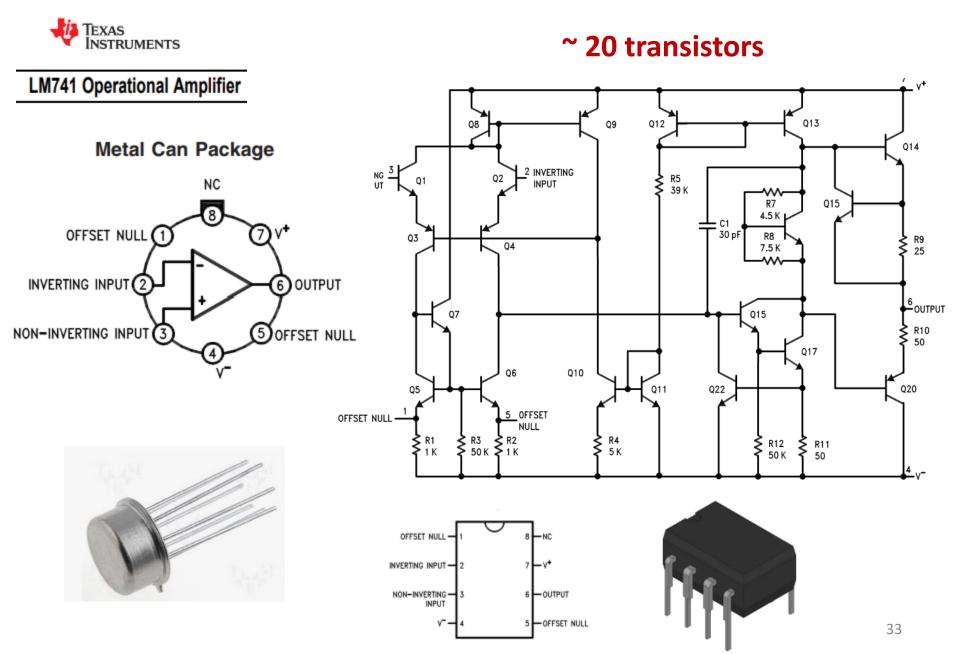
The OP AMP is an active device requiring power from a DC power supply. A common design has two balanced $\pm V_b$ bias voltages.



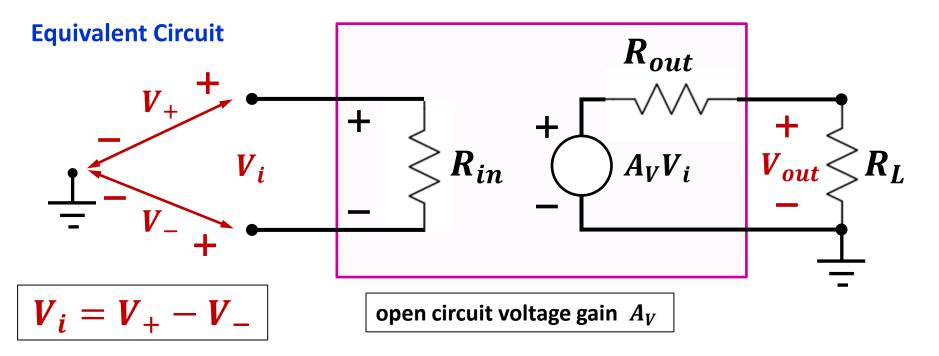
The output signal V_{out} can swing between $\pm V_b$ but it will saturate if trying to exceed $|V_b|$.

NOTE: An OMP AMP is a "direct coupled" amplifier and it works also in DC conditions, not only AC.

A very popular general purpose Op Amp: the "741"

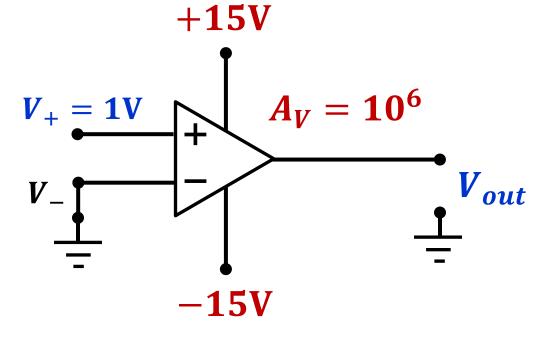


Ideal Operational Amplifier



- Input Resistance $R_{in} \rightarrow \infty$
- Output Resistance $R_o \rightarrow 0$
- Open-circuit voltage gain $A_V \rightarrow -\infty$. In real devices $A_V \approx 10^6$.
- Bandwidth $\rightarrow \infty$ (same operation up to any frequency)
- $V_{out} = 0$ when $V_+ = V_-$
- Behavior is independent of temperature

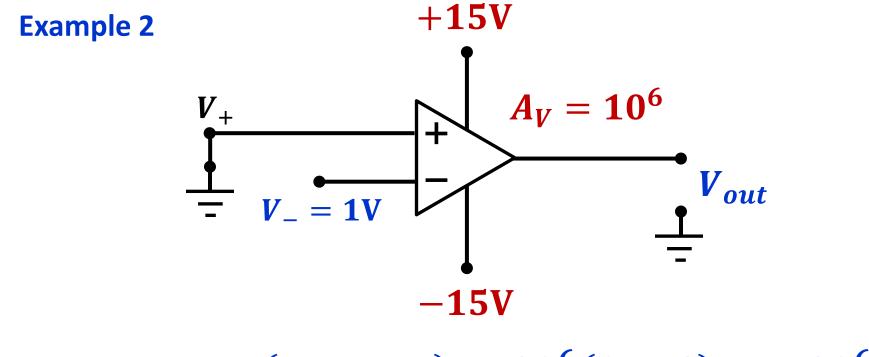
Example 1

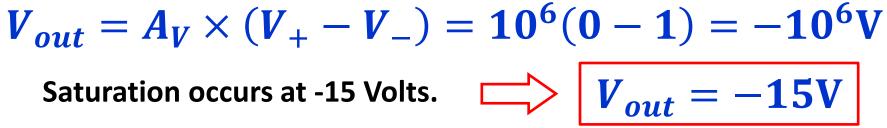


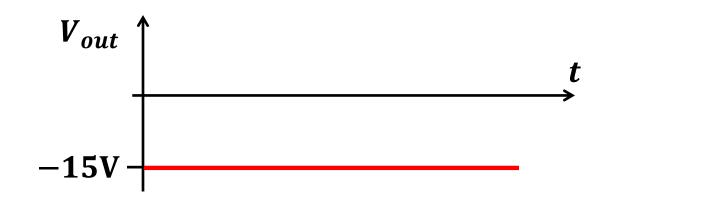
$$V_{out} = A_V \times (V_+ - V_-) = 10^6 (1 - 0) = 10^6 V$$

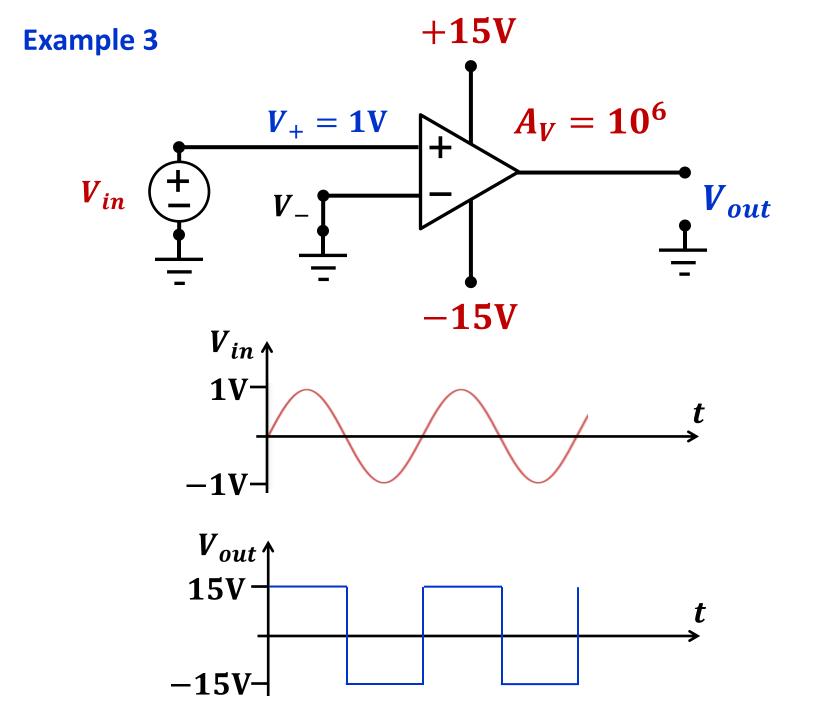
Saturation occurs at +15 Volts. $\bigvee V_{out} = 15V$

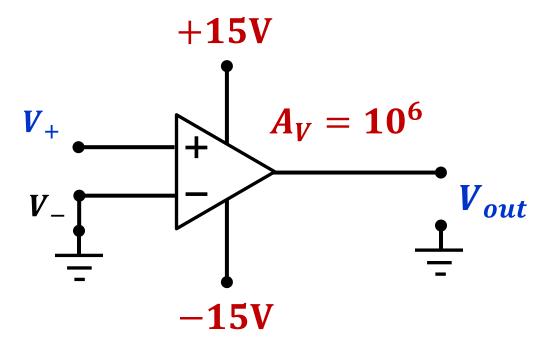












The circuit in Examples 1, 2, and 3 is called a "COMPARATOR"

$$V_{out} = +15V$$
 if $V_+ > V_-$
 $V_{out} = -15V$ if $V_+ < V_-$
 $V_{out} = 0V$ if $V_+ = V_-$

The gain A_V of the OP AMP is extremely large and the output saturates easily to $\pm V_b$.

This occurs even for minute values of the voltage between input terminals when

$|(V_{+} - V_{-})| > V_{b}/A_{V}$

Feedback

When $|(V_+ - V_-)| < V_b/A_V$, the output V_{out} does not saturate and follows the functional form of the input as

$$V_{out} = A_V(V_+ - V_-)$$

implying

$$V_+ \approx V_-$$

since the gain is so large.

To achieve these conditions, the OP AMPS are operated in *FEEDBACK* configuration.