ECE 205 "Electrical and Electronics Circuits"

Fall 2023 - FINAL REVIEW
MWF - 12:00pm

Prof. Umberto Ravaioli
2062 ECE Building

Final Exam

Exam is comprehensive. Duration: 1 h 50 m .
Expect 10 problems. Topics:
-Circuit analysis (loop and/or node voltage) (1)
-Equivalent circuit (Thevenin and/or Norton) (1)
-Circuit analysis using phasors (1)
-Transient analysis of RC and/or RL circuit (1)
-Circuits with diodes and BJTs (2)
-Digital logic (1)
-RC Filters (1)
-Operational Amplifier with resistors (1)
-Operational Amplifier with impedance (1)

- Help sheet
$\begin{array}{ll}\text { (a) Series: } & \text { (b) Parallel: }\end{array}$

$$
\mathrm{R}_{\mathrm{eq}}=\sum_{i=1}^{N} \mathrm{R}_{\mathrm{t}}
$$

$$
\frac{1}{\mathrm{R}_{\mathrm{aj}}}=\sum_{\sum_{n=1}}^{N} \frac{1}{\mathrm{R}_{k}}
$$

$$
\mathrm{R}_{1}
$$

R_{2}

$$
\mathbf{R}_{e q}=\mathbf{R}_{1}+\mathbf{R}_{2}
$$

$$
\mathrm{R}_{\text {eq }}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

- Help sheet

Voltage/Current Divider

- Help sheet

- Help sheet

$$
\begin{array}{|cc}
+V_{c}(t)- & +V_{i}(t)- \\
\rightarrow i_{c}(t) & \rightarrow i_{i}(t) \\
i_{c}(t)=C \frac{d V_{c}(t)}{d t} & v_{L}(t)=L \frac{d I_{L}(t)}{d t} \\
\hline
\end{array}
$$

- Formula sheet

- Help sheet

OFF: $\mathrm{V}_{\mathrm{BE}}<\mathrm{V}_{\mathrm{BE}}$ (on), $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}=0$
FA: $V_{B E}=V_{B E}(o n), I_{C}=\beta I_{B}$
SAT: $\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}}$ (on), $\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CE}}$ (sat)

- Help sheet

Selected rules of boolean algebra:

$$
\begin{aligned}
& (\mathbf{a} \cdot \mathbf{b}) . \mathbf{c}=\mathbf{a} \cdot(\mathbf{b} . \mathrm{c}) ;(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c}) \\
& \hline \mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} ; \mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} \\
& \hline \mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} . \mathbf{c} \\
& \hline \text { NOT(NOT(a)) }=\mathbf{a} \\
& \hline \mathbf{a}+\overline{\mathbf{a}} \cdot \mathbf{b}=\mathbf{a}+\mathbf{b} ; \quad \mathbf{a}+\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \\
& \hline
\end{aligned}
$$

De Morgan Theorem $\overline{\mathbf{A}+\mathbf{B}}=\overline{\mathbf{A}} \overline{\mathbf{B}} \quad \overline{\mathbf{A B}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}$

- Help sheet

You have plenty of time for the test. Verify your answers by plugging results back into the equations before pushing the "Grade" button.

Make sure you read the questions carefully (at least three times). Many of the mistakes you make are due to the fact that you solve a different problem than asked.

As last technical comments, let's revisit a few examples

BJT wired as a diode

$$
\begin{gathered}
-V_{1}+R_{1} I_{1}+V_{B E}=0 \\
I_{1}=\frac{V_{1}-V_{B E}}{R_{1}}
\end{gathered}
$$

As long as $V_{1}>V_{B E}(\mathbf{o n})$, the BJT is in Forward-Active mode. BJT's wired as in the diagram, are often adopted in integrated circuits, to obtain ultra-low leakage diodes
 and for design of circuits which are temperature compensating.

$$
\begin{gathered}
\beta=100 \\
V_{B E}(o n)=0.7 \mathrm{~V} \\
V_{C E}(\text { sat })=0.2 \mathrm{~V}
\end{gathered}
$$

$$
\beta=100
$$

$$
V_{B E}(o n)=0.7 \mathrm{~V}
$$

$$
V_{C E}(s a t)=0.2 \mathrm{~V}
$$

Assume: BJT ON

$V_{B E}=V_{C E}=0.7 V$
$\mathrm{V}_{\mathrm{x}}=V_{C E}+4 V=4.7 \mathrm{~V}$

$\beta=100$

$$
V_{B E}(o n)=0.7 \mathrm{~V}
$$

$$
V_{C E}(s a t)=0.2 \mathrm{~V}
$$

Assume: BJT ON

$$
\begin{gather*}
I_{1}=I_{C}+I_{2} \\
=I_{C}+I_{B} \\
I_{1}=I_{E} \\
I_{1}=1 \mathbf{k} \Omega \times 4 \mathrm{~V} \\
=\mathbf{4 m A} \\
\hline I_{E}=\mathbf{1 k} \Omega \times 4 \mathrm{~V} \tag{17}\\
=\mathbf{4 m A}
\end{gather*}
$$

$$
\beta=100
$$

$$
V_{B E}(o n)=0.7 \mathrm{~V}
$$

$$
V_{C E}(s a t)=0.2 \mathrm{~V}
$$

$$
I_{1}=I_{E}=4 \mathrm{~mA}
$$

$$
V_{C E}=0.7 V
$$

What are I_{B} and I_{C} ?

$V_{C E}>V_{C E}(\mathbf{s a t})$

Forward-Active Mode
$I_{E}=I_{B}+I_{C}=I_{B}+\beta I_{B}=101 I_{B}$
$I_{B}=4 \mathrm{~m} / 101=39.6 \mu \mathrm{~A}$
$I_{C}=100 I_{B}=3.96 \mathrm{~mA}$

OP AMP Current Source

OP AMP Current Source

OP AMP Current Source

$$
\begin{aligned}
& \boldsymbol{V}_{+}=\boldsymbol{V}_{-}=\mathbf{0} \\
& \xrightarrow[V_{S}]{\stackrel{V_{S}}{+}} \\
& I=\overbrace{i_{-}}^{=0}+I_{L}=I_{L} \quad I_{L}=\frac{V_{S}-V_{-}}{R_{S}}=\frac{V_{S}}{R_{S}}
\end{aligned}
$$

Example: $V_{S}=1 V ; R_{S}=1 \mathrm{k} \Omega$

Independent of $\boldsymbol{R}_{\boldsymbol{L}}$

Example - Four equal resistors in input

$$
\begin{array}{lll}
V_{+}=V_{-}=0 \\
i_{+}=i_{-}=0 & R=1 \mathrm{k} \Omega & \left.V_{i}\right|_{\max }=1 \mathrm{~V}
\end{array}
$$

$V_{-}=0$ virtual ground. Each input resistor carries a maximum current $\left.\boldsymbol{i}_{\boldsymbol{k}}\right|_{\text {max }}=1 \mathrm{~mA}$
$\left.i_{F}\right|_{\text {max }}=4 \mathrm{~mA}$ independent of \boldsymbol{R}_{F}. The output voltage is $V_{\text {out }}=R_{F} \times\left. i_{F}\right|_{\text {max }}$

Example - Equal input resistors

$$
\begin{aligned}
& V_{+}=V_{-}=\mathbf{0} \\
& \boldsymbol{i}_{+}=\boldsymbol{i}_{-}=\mathbf{0}
\end{aligned}
$$

$$
R=\mathbf{1} \mathbf{k} \boldsymbol{\Omega}
$$
 $R=1 \mathrm{k} \Omega$

$$
\left.V_{i}\right|_{\max }=1 \mathrm{~V}
$$

If $R_{F}=R=1 \mathrm{k} \Omega$, then $V_{\text {out }}=4 \mathrm{~V}$ at most.
The maximum value allowed for R_{F} is when $\left|V_{\text {out }}\right|=V_{b}=12 \mathrm{~V}$ (remember, the input current does not change with \boldsymbol{R}_{F})

$$
R_{F, \text { max }}=V_{b} /\left.i_{F}\right|_{\max }=12 \mathrm{~V} / 4 \mathrm{~mA}=3 \mathrm{k} \Omega
$$

ICES Survey Online

There is still time to complete the course evaluation

go.illinois.edu/ices-online

or you can use the link sent to you by email.

The survey closes soon.

QUESTIONS

